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ABSTRACT

The highly energetic Agulhas Retroflection region south of the African
continent lies at the junction of the South Indian, South Atlantic, and Circumpolar
Oceans. A new survey of the Agulhas Retroflection taken in March 1985, plus
historical hydrographic data, allow its dynamical and water-mass characteristics,
and its role in exchanging mass, tracers, and vorticity between the three oceans, to
be extensively characterized. The 1985 survey is composed of three independent,
synoptic elements: a grid of closely-spaced, full-water-depth hydrographic
stations (the first entirely full-water-column survey in this area), including several
transects of the Agulhas and Agulhas Return Currents; a continuous survey of the
path of the currents (the first such survey in the Agulhas); and a contemporaneous
and relatively cloud-free sea surface temperature image derived from satellite
infrared measurements.

Mass transport balances within the closed grid boxes of the 1985
hydrographic survey provide information about current transport, recirculation
(transport in excess of estimated returning interior ocean transport), and the
overall Retroflection transport pattern. The current transport values exceed by as
much as a factor of 1.5 the maximum interior transport computed from observed
wind-stress curl and linear theory. Agulhas Current transports ranged from 56 to
95 x 106 m s-1 at four 1985 transects crossing the current. Agulhas Retum
Current transports at the two 1985 transects were 54 and 65 x 106 m s-1.
These transports are computed relative to 2400 dbar, which lies below the deep
oxygen minimum emanating from the South Indian Ocean, and above the North
Atlantic Deep Water salinity maximum.

The current retroflected in two distinct branches in 1985, with a cold ring
and a partially isolated warm recirculation cell found between the two branches.
The satellite-derived séa surface temperature (SST) image, in agreement with the
in situ measurements, showed that the cold ring lacked a cold SST anomaly; that
the subsurface current path, as represented by a survey of the 15 C isotherm and
200 dbar surface intersection, was closely followed by a sharp front in sea
surface temperature; and that most of the Agulhas's surface warm core retroflected
upstream of the second retroflection branch.
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Anticyclonic curvature vorticity at sharp turns in the subsurface current
path was found to exceed the maximum allowed by gradient wind balance,
indicating that at these locations time-dependence and cross-frontal flow are
important. The current's density field is found to meet necessary conditions for
baroclinic and barotropic instability. These instability mechanisms may play a
role in ring formation and current meandering.

Top-to-bottom cross-stream spatial and isopycnal water-mass layering in
the Agulhas Current, Agulhas Return Current, and associated rings are presented
in two sets of sections, one contoured with pressure and the other with potential
density as vertical coordinate. Temperature, salinity, oxygen, potential density
and velocity sections are shown contoured versus pressure; and pressure, salinity,
oxygen, and planetary potential vorticity are shown contoured versus potential
density. These sections clearly illustrate water-mass structure both in space and
relative to isopycnal surfaces. Strong salt, oxygen, and potential vorticity fronts
on isopycnals in the upper ~300 m across the Agulhas and Agulhas Retum
Current are observed, as are deep western boundary filaments of (i) salty, low
oxygen water at intermediate depths traceable to Red Sea Water influences, and
(ii) salty North Atlantic Deep Water close round the tip of Africa.

The 1985 cold-core ring is the first cold-cored isolated feature to be
observed within the Retroflection itself. Its transport was 64 x 106 m s-1, its
integrated kinetic and available potential energy anomalies were 8.3 and
61 x 1015 J respectively, and its integrated planetary potential vorticity anomaly
was 2.8 x 10-12 m-1s-1, The potential vorticity flux associated with the
exchange of 25 warm ring/cold ring pairs per year between the South Indian and
Southemn Oceans would balance the potential vorticity input by the wind to the
entire South Indian Ocean.

Interbasin flow of warm thermocline water (warmer than 8 C) from the
South Indian to the South Atlantic Ocean is reconsidered in light of the 1985
hydrographic data. Thermocline water flow from the South Indian Ocean into the
South Atlantic in the 1985 and historical observations is found to range from 2.8
to <9.6 x 106 m s-1. These values are less than the <10 x 106 m s-! needed
to balance the Atlantic Ocean export of deep water, and implies that the deep water
export is balanced in part by water colder than 8 C.
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FOREWORD

One might consider that if one is born an explorer
he will never find existence dull.
— Ansel Adams: An Autobiography

Roald Amundsen claimed the last great prize of discovery in his dash to the
South Pole in 1911. My generation - those who are now young adults - is thus about
the last to have direct living ties, through our grandparents and oldcst friends, to a world
with a frontier. Those who first dreamt of journeying beyond the horizon - painters of
caves, builders of earthen mounds, and arrangers of stones - created the frontier
millennia ago. We are the last of many generations to experience even indirectly an
open, ever-expanding world.

And my generation is the first to grow up with the understanding that our planet
is fragile and small compared to the impact of human habitation and technology. Images
of Earth rising over the Moon's horizon (taken by the Apollo astronauts in 1969)
symbolize this new awareness. As children we read Rachel Carson's Silent

Spring (1962) and, as teenagers, the Club of Rome's Limits to Growth (1974). We
know that critical natural habitats are threatened by pollution and deforestation; that
anthropogenic changes in atmospheric chemistry will cause sea level to rise, with
potentially disastrous consequences; that nuclear weapons sufficient to kill most of the
inhabitants, human and otherwise, of at least the northem hemisphere are already in
place. Nuclear winter captures our imagination because it links environmental collapse
and nuclear war in a single image.

Our and our children's futures may yet be found in a crystal ball full of ashes.
But we who are scientists, artists, photographers, thinkers, and poets, are again
explorers. We seek to understand our world as a single interconnected system, to learn
how to minimize our damage to our planet. Our generation is pioneering new ways of
thinking, appropriate to our closed fragile world, that will gradually supplant the twin
traditions of frontier and war. The expansion, exploitation, confrontation, and conflict
that have both glorified and scarred human history will never disappear, but they may
become increasingly irrelevant to most of the inhabitants as we leam how to live in
harmony with nature and with each other. We know that exploration, broadly defined,
has always been a prime source of social innovation, whether benign or brutal. Our
discoveries hold forth the promise of a more just and peaceful society.
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The remainder of this Foreword summarizes my thesis for my non-
oceanographer friends and family.

The Agulhas Current is a warm, swift current found flowing along the eastem
coast of southemn Africa. It leaves the African coast near the tip of the continent and then
curves around in a large loop south of Africa called the Agulhas Retroflection. The
Agulhas is the South Indian Ocean counterpart of the Gulf Stream and Brazil Currents in
the North and South Atlantic, and of the Kuroshio and the East Australia Currents in the
North and South Pacific. These currents are all found in the Earth's temperate,
subtropical zone, and they each flow poleward.

As natural features of the Earth's surface, these currents are impressive in scale.
Only in 1970 was it possible to see the Gulf Stream system clearly as a whole entity, in
the first very-high-resolution satellite infrared image of thz North Atlantic, and then only
in two dimensions at the ocean's surface. These currents are sometimes called 'rivers in
the ocean’ even though they do not flow 'through' the ocean but are inseparable from
it. Each transports about two thousand times as much water as the Mississippi, about
100 million cubic meters of water per second.

Velocities in the currents' core are 1 - 2 meters per second, or 2 - 4 knots.
This is the speed of an easy jog, slow compared to modern means of transportation. But
in 1770, mail packets often took two weeks longer than merchant ships to make the
passage from England to New England, until the Postmaster General for the American
colonies, Benjamin Franklin, had a chart of the Gulf Stream engraved and distributed.!

In the ocean interior, away from the boundary currents, water flows
equatorward on average at subtropical latitudes. This slow equatorward interior flow
depends upon spatial variations in the wind field2 and the sphericity of the Earth. It is an

1B. Franklin, 1786: A letter . . . containing sundry maritime observations. Trans.
Amer. Philos. Soc., Philadelphia, 2:294 - 329. From H. Stommel, 1958: The Gulf

Stream.

2 Plus a small contribution due to atmospheric heating, cooling, evaporation, and
precipitation.




expression of the physical principle of angular momentum conservation.? The Agulhas
and other westermn boundary currents exist to return the equatorward interior flow back
toward the poles. Without this return flow, the polar oceans would quickly run dry.

The western boundary currents are found along western rather than eastern
boundaries of the ocean again because of the principle of angular momentum
conservation. The western boundary supplies to a water column moving poleward
torques of the right sign to balance increases in angular momentum with latitude on the
spherical Earth. Eastern boundary currents do indeed occur when winds blow
alongshore near an eastem boundary. The California Current along the Califomia coast
in the North Pacific and the Peru Current along the Peruvian coast in the South Pacific
are examples. But no net transport of water across latitude lines occurs in these
currents - the near-surface flow is balanced by equal and opposite deep flow ~ so no
net torque from the boundary is needed to sustain them.

The western boundary currents make a significant contribution to the global heat
balance since they bring warm tropical surface water poleward. The greatest heat loss
anywhere in the ocean occurs when the warm cores of these currents reach the poleward
side of the subtropical ocean circulation.

The currents are so energetic that they meander with time and shed warm- and
cold-core rings. The rings themselves, once formed and separated from the current, can
also transport heat from one ocean region to another.

The Agulhas Current is unique among the world's western boundary currents
because the African continent ends in the middle of the subtropical latitude band. This
means that the continent ends where the interior and Agulhas flow are still large. As a
result, the Agulhas shoots past the southem tip of Africa as a free jet. The free jet has no
westemn boundary to supply torques to balance increases in angular momentum with

latitude. So the angular momentum increase with latitude is balanced instead by

3 The curl of the wind field causes fluid in the surface layer to converge, squeezing the
underlying water column. As the height of water parcels in the column decreases, their
plan area, and thus their moment of inertia and angular momentum due to the Earth's
rotation, tend to increase. To counteract this change, the water parcels move
equatorward, along the surface of the spherical Earth, which reduces their angular
momentum by reducing the projected plan area that is perpendicular to the Earth's
rotation axis.




curvature in the current's path, which tums counterclockwise towards the South Indian
Ocean. This southward extension of the Agulhas from the African continent and the
great curving loop it makes there, is called the Agulhas Retroflection. The Retroflection
is a favored location for meandering and ring-formation. The current that emerges from
the Retroflection flowing eastward is called the Agulhas Return Current. Directly south
of the Return Current is the Antarctic Circumpolar Current that encircles the Earth in a
continuous eastward-flowing band.

The truncation of the African continent within the subtropics also means that the
South Indian circulation, including the Agulhas, and the South Atlantic circulation,
including the Brazil Current, are not entirely separate. Observations and theories both
indicate that part of the Agulhas flows around the tip of Africa from the Indian Ocean to
the Atlantic Ocean, although the magnitude and time-variability of this flow are not
known. As the warmest Agulhas water is considerably warmer than any other water
found in the southeast South Atlantic, this flow may be important in the heat balance for
the two oceans and may have far-reaching climatic consequences. These issues are not
well-understood at present.

This thesis presents measurements taken in early 1985 in and around the
Agulhas Current. During a month-long cruise, temperature, salinity, pressure, and
oxygen measurements were taken from the ocean surface to the bottom at 2 m
intervals,4 at almost a hundred stations separated by 20 - 50 km in the horizontal,
arranged in several lines across the current and across some of its associated rings. The
subsurface path of the current was followed for 2500 km by navigating along the
intersection of a depth surface and a sloping temperature surface. Satellite infrared
images of sea surface temperature from the same time period were also obtained.

Some of the less technical conclusions of the thesis are as follows. The surface
temperature is not related in an entirely simple way to sub-surface temperature patterns
and the current transport field. Knowledge of this relationship is important for

4The raw data actually consists of digital signals transmitted from an array of sensors
and includes samples over intervals much smaller than 2 m. The sampling interval
depends on the rate the instrument is lowered and on characteristics of the sensors. The
raw data is averaged into 2 m bins that provide more than sufficient resolution for
studies of ocean circulation such as this thesis. Other investigators and instruments
address themselves to oceanic fine- (10 cm) and micro- (<1 cm) structure
measurements.
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interpreting the vast majority of satellite infrared images that are not complemented by
subsurface measurements. Satellite infrared images have been interpreted previously as
showing only gentle tums in the path of the current. The current path shown by the new
survey's subsurface measurements includes several very abrupt ninety-degree or greater
tuns. Also, the flow pattern that would be inferred from the satellite images taken
during the survey is rather different from the pattern computed from the subsurface
measurements. The image and the subsurface measurements can be reconciled, but they
each tell only part of the story.

This new survey shows the current flowing directly over the relatively shallow
(<3000 m) Agulhas Plateau instead of around it as in all previous observations. This
implies that the current is not steered by bottom topography as strongly as was
previously thought.

The current flow is larger than the estimated returning ocean interior flow by a
factor of almost two. Similar recirculation has been observed in the Guilf Stream and in
numerical models of the ocean, though the dynamics of this recirculation are not well
understood.

The Retroflection was found to have not one but two distinct branches during
the survey. The survey also found a large cold-core ring within the Retroflection itself,
an entirely novel observation. The ring is not detectable in the contemporaneous satellite
infrared images of sea surface temperature. A comparison of the satellite images and the
other measurements suggests that the warm core of the current seems to follow the
branch of the Retroflection farthest upstream. The comparison also suggests that the
upstream branch is slowly moving towards the southwest. This movement is similar in
direction and rate to previous satellite observations of Agulhas path movement.

Signs of several warm rings were seen to the west of the Retroflection in this, as
in previous, surveys.

Net transport from the Indian to the Atlantic Ocean is calculated from this 1985
survey, but the amount is only one-fourth of the value calculated from data taken in
1983. The net calculated transport is shown to depend on how far the calculation is
carried across rings near the coast.

Taken together, existing analytical and numerical models make reasonable
predictions for the gross scale of the Retroflection, and for the magnitude of the
recirculating transport. They also show, in general agreement with observations,
enhanced ring formation at the Retroflection, and Indian to Atlantic transport via both
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steady flow and rings. Other phenomena are depicted less well or not at all by the
models: the influence of bottom topography on the course of the Agulhas, the interaction
of the Retroflection and the Antarctic Circumpolar Current, and the effect on the
Agulhas of time-dependence in the winds over the ocean interior.

We do not yet know how some of the oceanic phenomena mimicked by the
numerical models work. What sets the intensity of the recirculation? How does the
boundary current join to the interior flow? How does the boundary current affect the
structure of the interior circulation? How do Agulhas rings form? What determines their
trajectory after separation?

Further, how do the world's boundary currents compare to each other? Will
such a comparison provide any clues to their dynamics? Future graduate students will
answer these and other interesting questions.
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Chapter 1: Introduction

The Agulhas Current is the western boundary current found flowing along the
eastern coast of southern Africa. It separates from the coast near the southem tip of the
continental slope. South of the continent, as a free jet, it curves around in a large loop
called the Agulhas Retroflection. The jet emerges from the Retroflection flowing east as
the Agulhas Return Current.

The Agulhas Current separates from the western boundary and flows out into
the ocean as a free jet near the latitude where the wind-driven interior transport is at a
maximum, since the African continent's southem tip lies near the middle of the
subtropical anticyclonic wind-stress curl zone. This unique arrangement - all other
western boundary currents separate from meridional coasts that continue
poleward - gives rise to the Retroflection. After separation, planetary vorticity
changes experienced by the free jet as it crosses latitude lines are balanced, on average,
with jet curvature vorticity. Only a very small part of the jet transport, derived from its
inshore side and govermed by linear dynamics, flows into the South Atlantic ocean
instead of retroflecting (de Ruijter, 1982). The free jet injects a large amount of heat,
kinetic, and potential energy into the region just south of Africa, making it one of the
ocean's most dynamically active and interesting areas.

The word 'retroflect’ was first given to the abrupt turn of the Agulhas south of
Africa by Nils Bang (Bang and Pearce, 1970) after the first synoptic survey of the area
in March 1969. Fig. 1.1 and 1.2 reproduce figures from Harris and van Foreest
(1978) where the 1969 survey final results were reported. In the 1969 survey, a warm
core ring was observed off Cape Town.

During the next survey of the region in November-December 1983, the

Retroflection and a warm core ring off Cape Town were seen in positions very similar
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Fig. 1.1 — Agulhas Retroflection region, March 1969 hydrographic survey, station
locations and bottom topography. This is a reproduction of Fig. 1 of Harris and van

Foreest (1978).
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Fig. 1.2 — Agulhas Retroflection region, March 1969, acceleration potential on the

26.6 o, surface relative to 1000 m. This is a reproduction of Fig. 5 of Harris and van
Foreest (1978). The warm core ring off Cape Town is centered near 35°S, 15°E.




to those of the 1969 survey. Fig. 3.13 and 3.14 in Chapter 3 reproduce figures from
Gordon et al. (1987).

From these two surveys alone one might conclude that the Retroflection is a
nearly steady region. In fact, satellite infrared and altimeter observations indicate that
the Retroflection location, at least, varies considerably with time. Sea surface
temperature images derived from satellite infrared measurements for the period 1984—
1985 show considerable variation in the location of Agulhas surface temperature
signature (Lutjeharms and van Ballegooven, 1988). Variability in sea surface height
along a track cutting through the Retroflection was observed during repeated satellite
altimeter passes (Cheney et al., 1983).

This thesis presents the results of a survey of the Retroflection region in
February/March 1985 performed by John M. Toole and James R. Luyten. This

survey includes three independent, synoptic elements:

- an extensive grid of closely-spaced, full-water-depth hydrographic stations,
including several transects of the Agulhas and Agulhas Return Currents
(Fig. 1.3),

+ a continuous survey of the path of the currents (Fig. 1.4), and

+ a contemporaneous and relatively cloud-free sea surface temperature image
from satellite infrared measurements (Fig. 1.5).

This is the first hydrographic survey of this region in which nearly all stations reach to
within 200 m of the bottom and the first continuous path survey of the Agulhas and

Retumn Currents.
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Fig. 1.3 — Agulhas Retroflection region, February/March 1985 hydrographic
(CTD/O03) survey, station locations and bottom topography. Stations marked with solid
dots reach to within 200 m of the bottom.

The maximum depth and bottom depth at stations marked with open circles are:

Sta. End (m) Bottom (m)

215 4081
222 4705
223 4807
224 4305
226 3243
227 3607
229 2679

4415
4907
5013
4644
4960
5013
5108

Sta, End(m) Bottom(m) Sta.

230
231
232
244
254
255
261

4033

237
5009
4005
4885
5003
3311

4741
4793
5481
4347
5488

5402

5381

276
279
281
289
292
294
296

i

End (m) Bottom (m)
2105 2414
2531 2865
2615 3085
4001 5013
1231 4591
1007 3819
1263 2113

35°S

45°




35°S

40°
- h°°0 - 45°
1 1 1 L W SR R NN VAN S S E 1 1 L | I
15°E 20° 25° 30°

Fig. 1.4 — Agulhas Retroflection region, February/March 1985, continuous survey of
the path of the current, produced by navigating along the intersection of the 15 C
isotherm and the 200 m depth surface.




Fig. 1.5 — Agulhas Retroflection region, 25 — 27 March 1985, composite satellite
infrared image of sea surface temperature. Warm sea surface areas appear black, and
colder clouds appear white. Black on white line is the continuous survey of the
intersection of the 15 C isotherm and the 200 m depth surface. Black band extending
diagonally across image is the warm core of current, which is following the smaller
upstream Retroflection branch. Some black warm core water is seen along the survey
line also. Note patch of warmer water off Cape Town near the surface expression of the
warm-core ring. The surface temperature front and survey line are in good agreement
along the westward-flowing Agulhas Return Current (southern half of continuous
survey). Cold-core ring within the Retroflection is not visible in this image (cf.
Figs. 1.7 and 1.8). Straight vertical line in upper left is a remnant of the edge of one of
the daily satellite images. This image is enlarged 116% relative to the regional maps.




This thesis uses these three survey elements independently and in combination to
answer a number of questions about the characteristics and dynamics of the

Retroflection region. For the first time in this region:

» The subsurface path of the Agulhas and Agulhas Return Currents is
characterized. The subsurface current path is compared to the current path
inferred (i) from the accompanying 1985 hydrographic survey, (ii) from the
accompanying 1985 satellite infrared image of sea surface temperature,
(iii) from previous hydrographic and satellite surface temperature
measurements, and (iv) from dynamical models.

+ Information about bottom and reference level velocities, recirculation
(transport in excess of estimated returning interior ocean transport), and flow
bifurcation is inferred from transport balances within closed grid boxes,
computed relative to a deep level.

» The top-to-bottom structure of the current is examined at repeated synoptic
hydrographic transects. Sections are presented of temperature, salinity,
oxygen, potential density and velocity on pressure surfaces; and of pressure,
salinity, oxygen, and planetary potential vorticity on potential density
surfaces. Characteristics at this new set of transects are related to
characteristics at previous (single or intermediate-depth) transects in the
Agulhas and to characteristics observed in the interior South Indian, South
Atlantic, and Circumpolar Oceans.

+ Terms in the expression for toral potential vorticity in natural isopycnal
coordinates (derived here) are computed as data coverage permits: the
stratification and isopycnal shear are estimated at the hydrographic transects,
curvature is estimated along the subsurface current path survey, and
curvature vorticity is estimated at the intersections of the transects and the
path survey.




+ A cold-core ring was observed for the first time within the Retroflection. Its
structure, transport, and contribution to South Indian heat, salt, and vorticity
balances are characterized.

These results are compared with their Gulf Stream analogs where appropriate. Also,
interbasin exchange between the South Indian and South Atlantic oceans
(Gordon, 1986) is reconsidered in light of the new hydrographic data and a recent
inverse model (Rintoul, 1988). One of the 1985 transects and one of Gordon's 1983

transects cross warm-core rings situated just southwest of the tip of Africa.

February/March 1985 measurements
The 1985 hydrographic survey is composed of 92 CTD/O stations

(conductivity-temperature-depth-oxygen). Stations 207 to 279 were taken between
20 February and 16 March; the remaining stations 280 to 298 were taken between 22
and 26 March. (Fig. 1.3). Of these stations, 71 reach to within 200 m of the bottom.!
Most stations are organized into survey lines that enclose four boxes suitable for
calculating flux balances. The survey includes four transects of the Agulhas Current,
two of the Agulhas Return Current, a transect of a cold core eddy within the
Retroflection, and of a warm core eddy off Cape Town. Horizontal resolution along
transects is 20-60 km.

The continuous survey of the path of the currents (Fig. 1.4) was made in the
period 16 to 22 March, during the break in the hydrographic survey. The path was
surveyed by following the intersection of an isotherm and a depth surface, a method

developed and first used in the Gulf Stream by Fuglister and Voorhis (1965). In the

IThe 21 stations ending >200 m above the bottom are marked with open circles in
Fig. 1.1. The figure caption lists the maximum pressures and bottom depths at these
stations.




1985 survey of the Agulhas, the intersection of the 15 C isotherm and the 200 m depth
surface was followed for 2500 km, from the southern African slope at 35°S, 24°E
through the Retroflection to the northeast flank of the Agulhas Plateau. This was
accomplished by navigating the ship downstream according to temperature profiles
produced by XBTs (expendable bathythermographs) deployed every 15 - 20 minutes
for the 6 day period of the path survey.

The sea surface temperature image from satellite infrared measurements was
composited from three images taken by the Advanced High Resolution Radiometer
(AVHRR) onboard a NOAA TIROS-N sun-synchronous satellite. The three images
used here were collected on 25, 26, and 27 March 1985. The thermal infrared
radiation intensity measurements taken by radiometer channel 4 (wavelengths
10.5 - 11.3 pm) were used.2 First each image was registered to identical geographical
coordinates (Luetkemeyer, 1987) and then a single relatively cloud-free image
(Fig. 1.5) was generated by retaining the wammest value from each 4 km x 4 km

pixel .

Qverview of February/March 1983 Retroflection circulation

A consistent picture of the Retroflection in February/March 1985 emerges from
the analysis. According to the transport field, the Agulhas retroflected in two branches,
one several hundred kilometers to the north of, and the other several hundred kilometers
to the southwest of, the southemn tip of the continental slope. The continuous survey of
the path of the current followed the larger downstream branch that accounted for most of
the transport. On the other hand, most of the Current's warm core followed the smaller

upstream branch, judging from the satellite sea surface temperature image. The Agulhas

2The channel 3 images for the 25, 26, 27 March 1988 could not be used for cloud
removal because of sun glint (K. Kelly, pers. comm.)
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immediately downstream from the smaller branch was found displaced far up onto the
continental slope with substantially reduced transport. The stagnation point between the
two branches was occupied by a large cold core ring that could be seen in the subsurface
fields but not in the satellite or hydrographic sea surface temperature fields (Figs. 1.5
and 1.6 vs. Figs. 1.7 and 1.8). This is the first time a cold-core ring has been
observed, by any type of measurement, within the Retroflection loop, though such rings
are not uncommon in the subtropical gyre east of the Agulhas Plateau. Both of the
Retroflection branches and the cold-core ring appear to have been propagating to the
west. A large warm core ring was observed off Cape Town, similar in position and size
to rings observed in 1983 and 1969. Other warm features were grazed by the
westernmost line of the hydrographic survey.

The continuous survey of the path of the currents included many surprising
features. The Agulhas meandered up onto the upper continental slope as far as the
400 m isobath, even though the current’s geostrophic shear extends to depths greater
than 2000 m. After a series of meanders across the slope, the current separated from it
at its southernmost extension and proceeded due west from the separation point, rather
than south, for several hundred kilometers No existing dynamical model of the
Retroflection and no previous observations exhibit separated westward flow.
Nevertheless, the current did finally turn abruptly south, despite its lack of southward
momentum and thus motion across latitude lines. After several hundred kilometers of
southward flow, the current turned again rather abruptly, this time to the east, executed
a gentle north-south meander and made a final turn, sharper than the previous two, that
sent it over the central Agulhas Plateau. The current previously had been observed and
modelled always flowing around, rather than over, this relatively shallow (<3000 m)

feature.
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Fig. 1.6 — Agulhas Retroflection region, February/March 1985, temperature at nomtinal
sea surface (6 dbar) from CTD/O, station data. Again, cold-core ring is not visible
(cf. Figs. 1.7 and 1.8). Discrepancies between this figure and the satellite infrared
image of sea surface temperature are due to propagation of features (see Chapter 2).
Contour shapes away from stations locations indicated by dots are highly subjective.
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15°E 20° 25° 30°

Fig. 1.7 — Agulhas Retroflection region, February/March 1985, temperature on
200 dbar surface from CTD/O; station data. The warm-core ring off Cape Town is
centered at 35°S, 15°E; the cold-core ring within the Retroflection is centered at 37°S,
27°E. Small upstream branch of Retroflection is at about 26°E, and larger downstream
branch is west of 17°E. Contour shapes away from station locations indicated by dots
are highly subjective. This can be seen by comparing the 15 C isotherm of this figure
with the continuous survey of 15 C at 200 dbar shown in Fig. 1.4. Some propagation
of features is also evident (where temperatures at station locations differ between the
two surveys).
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Fig. 1.8 — Agulhas Retroflection region, February/March 1985, temperature on
500 dbar surface from CTD/O; station data. The warm-core and cold-core rings
visible at 200 dbar (see previous figure) are also visible here. Contour shapes away
from stations locations indicated by dots are highly subjective.
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The Retroflection loop in 1985 extended westward to 15.5°E, 350 km west of
its position at 20°E during the 1969 and 1983 hydrographic surveys. The 1985
Retroflection position happens to be at the westernmost, and the 1969/83 positions at
the easternmost, of the range of Retroflection positions seen in satellite infrared images
from 1984 - 1985 (Lutjeharms and van Ballegooyen, 1988, their figure showing the
satellite-derived Retroflection positions is reproduced as Fig. 2.10 in Chapter 2). The
westernmost retroflecting flow observed so far was found at 13°E: a drifter
Griindlingh (1978) deployed in the Agulhas Current proceeded west to this longitude,
looped around once in a 150 km diameter circuit there, and then returned east in the

Return Current.

vervyi h

A great deal of new information is provided by the 1985 measurements. This
thesis presents the analysis of these new measurements, integrating them into the
existing descriptive and theoretical ideas about the region. Many of the conjectures and
conclusions derived from earlier surveys and from modelling efforts based upon them
are confirmed and quantified by the picture of the Retroflection in February/March 1985
that emerges here. In other cases, unexpected characteristics of the Retroflection in
1985 contradict our preconceptions.

The path of the Agulhas and Agulhas Return Currents in February/March 1985
is discussed in Chapter 2. The continuous survey of the path of the current following
the intersection of the 15 C isotherm and the 200 m depth surface, the satellite infrared
image of sea surface temperature, and the hydrographic survey provide complementary
information about the course of the current.

The current transport field and the interior circulation are discussed in

Chapter 3. At three of the four 1985 Agulhas Current transects, the Agulhas transport,
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computed relative to the shallowest reference level consistent with tracer fields,
exceeded the maximum returning interior transport, estimated from wind-stress and a
measure of the thermohaline circulation,3 by as much as a factor of two. The transport
at the remaining transect, which is located between the two Retroflection branches, was
considerably reduced as a result of the current being narrower and displaced inshore
over the upper continental slope. The calculated transport at this transect, after adjusting
it upward to eliminate mass flux convergence in the adjacent survey boxes, is slightly
less than the maximum returning interior transport.

The current structure and tracer fields are discussed in Chapter 4. The four
Agulhas and two Agulhas Return Current CTD/O) transects - the first set of
Retroflection transects to date with fine horizontal resolution and uniform full water
column coverage - yield important new information about current structure and its
variability. In particular, the impact of the two Retroflection branches on the tracer field
can be seen. Vertical extrema of water mass properties (salt, oxygen, and planetary
potential vorticity) and cross-frontal property gradients on isopycnals are discussed and
related to previous observations in the Agulhas, and in the Indian and Circumpolar

Oceans.

The velocity and total potential vorticity of the current is discussed in Chapter 5.
It is found that potential vorticity due to the horizontal component of relative vorticity
(u;) can be as large as the potential vorticity due to the vertical component of relative
vorticity (-uy) in the Agulhas. Vortex stretching near a strong front on isopycnals in
planetary vorticity (i.e., in stratification) may balance curvature vorticity as the current
meanders along the slope.

Existing dynamical models of the Retroflection are discussed, with reference to
the new observations, in Chapter 6. The asymptotic linear and nonlinear models of

de Ruijter (1982), the inertial/coastline curvature model of Ou and de Ruijter (1986),

3Thermocline slope at the eastern boundary (Veronis, 1973); see Chapter 3.
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the inertial jet models of Darbyshire (1972) and Lutjeharms and van Ballegooyen
(1984), and the numerical experiments of de Ruijter and Boudra (1985) and Boudra and
de Ruijter (1986) are discussed and compared to observations.

The characteristics of the cold core ring found within the Retroflection are
discussed in Chapter 7. Volume, kinctic, and potential energy anomalies are estimated.

The 1983 and 1985 Cape Town Eddies southwest of the tip of Africa and
interbasin exchange estimates are discussed in Chapter 8.

Conclusions are presented in Chapter 9. An atlas of all the contoured sections
and several appendices follow. Appendix A gives the derivation of the potential
vorticity equation in isopycnal natural coordinates. Appendix B presents the exact
conservation for the form of potential vorticity plotted in the Atlas, one based upon the
buoyancy frequencys; its relationship to neutral surface potential vorticity (McDougall,

1988, 1987) is also derived.
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Chapter 2: The path of the Agulhas and Agulhas Return Currents

2.1 Introduction

The path of the Agulhas and Agulhas Retumn Currents provides important
information about the Currents' dynamics. The bounding latitude and longitude of the
Retroflection, the relationship of the current path to topographic features, and the path
curvature are each important dynamical parameters. Also, the angle between the current
path and a transect across the current affects estimates at the transect of current width,
momentum transport, energy transport, and relative vorticity.

The path of the Agulhas and Agulhas Return Current in March 1985 is inferred
from three independent data sets taken over a 20 day period, 8 to 27 March:

. a survey of a temperature/depth contour (Fig. 1.4),

. a composite satellite infrared image of sea-surface temperature (Fig. 1.5),
and

. the geostrophic transport field relative to a deep level, computed from a
grid of full-water column hydrographic (CTD/0?) stations (Fig. 2.12).

The most comprehensive synoptic picture of the Retroflection available to date
emerges from these complementary, contemporaneous measurements. The Agulhas
was found to retroflect in two branches. The farther upstream of the two branches was
followed by the current's warm core, evident in the satellite image, and by about a third
of the current transport. The other branch was followed by the current's surface
temperature front, evident in the satellite image, by the temperature/depth contour

survey, and by the remaining two-thirds of the current transport.

19




This chapter presents the observational evidence for the current paths just
described. A large cold-core ring found between the first and second Retroflection
branches is described in Appendix B. A large warm-core ring observed off Cape Town
is described in Appendix C.

Temperature field characteristics of western boundary currents. Western
boundary currents have two distinct temperature signatures, both mentioned above. The
current's warm core is a surface temperature maximum found at and just below the sea
surface. It is composed of warm water advected from low latitudes poleward more
quickly than it can equilibrate to the changing local atmospheric temperature. The
Agulhas warm core is a shallow feature, confined to the upper 100 m at the 1985
transects (see Atlas).

The second signature of the western boundary current is a large horizontal
temperature gradient at all levels at and above the thermocline, including the sea surface;
it decays with depth beneath the thermocline. The relationship between the horizontal

temperature front and the current is the consequence of several conditions:
(i) the downstream flow is geostrophic and hydrostatic;

(i) the relationship between potential temperature and salinity is nearly single-
valued (i.e., a tight potential temperature/salinity relation &s) is found) in
the current, so density can be inferred from temperature and pressure
alone;

Conditions (i) and (ii) yield the thermal wind relation between the vertical shear of
alongstream velocity , pe o and the horizontal temperature gradient, gg'

op -1 Jr
26(s) gpf dy

(2.1)

¥

.4
Z p
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where g is the gravitational acceleration, p is density, f is the Coriolis parameter, and T
is temperature.

One further condition is required in order for the velocity and temperature fields
of the current to share a single geographic location. For the horizontal temperature front
position at all levels and the current's high velocity core at all levels to be found at the

same place,

(iii) the horizontal position of maximum horizontal temperature gradients must
vary little with depth.

The validity and implications of these assumptions in the Agulhas is discussed
below. For the moment it may be said that the maximum horizontal temperature
gradient and the horizontal maximum of velocity at all levels are observed to fall within
at most a 50 km cross-stream interval.

Temperature/depth contour survey. The March 1985 Agulhas horizontal
temperature front was surveyed by following the intersection of a constant temperature
surface (isotherm) and a constant depth surface. This temperature/depth contour
technique was invented and first used in the Gulf Stream by Fuglister and Voorhis
(1965) . The temperature/depth contour they used was the intersection of the 15 C
isotherm and the 200 m depth surface, chosen because their towed instrument operated
at 200 m depth, where they found the Stream's maximum horizontal temperature
gradient centered at 15 C. A temperature/depth contour follows the current if the
assumptions listed in the preceding paragraph are satisfied, and the contour temperature
lies within the high horizontal temperature gradient of the current all along the current's

path. A temperature/depth contour survey can provide information about only one

21




branch of the current. If in fact the current splits, no information will be provided about
the other branch.

The 1985 Agulhas temperature/depth contour followed the main larger-transport
branch of the Agulhas. The Agulhas path revealed by the contour exhibited several
unexpected characteristics, not previously seen in either observations or models of the
current:  strong across-slope meanders; westward flow just beyond the separation of
the current separated from the slope; extremely sharp tums; and flow directly over the
central Agulhas Plateau, which rises to ~3000 m from the ~5000 m basin floor.

Satellite image. The March 1985 Agulhas horizontal temperature front and the
warnm core are visible in a composite satellite infrared image formed from three daily
images taken 25, 26, and 27 March. Satellite infrared images have been much used to
locate western boundary current paths (Cornillon, 1982; Lutjeharms and van
Ballegooyen, 1988). These images provide high resolution instantaneous snapshots of
the surface temperature field of large ocean areas, generated at regular frequent intervals.
The images suffer from two important limitations. Clouds obscure the sea surface for
long periods in some regions. Only about 50 of the daily images from the period 1985-
6 have clear area over the Return Current region (Flament, pers. comm.), though
additional clear area under broken cloud can be reclaimed by merging successive
images. Another limitation of satellite images is that they see only the sea surface.
Atmospheric heating and cooling at the sea surface or surface-trapped currents can
decouple the surface temperature from the underlying thermal signature of geostrophic
currents. Cold-core rings in the Gulf Stream and, with this data set, in the Agulhas,
have weak or no surface thermal signature in summer.

Current transects. The March 1985 Agulhas horizontal temperature front and
warm core can also be seen in the CTD/O; transects across the current. Requiring mass

to balance in the closed survey boxes through which the current flows yields a transport
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streamfunction (relative to an arbitrary reference level) that quantifies the relative size of
flow branches. The CTD data also provides information on the temperature-salinity
relationship [mentioned in assumption (ii) above).

The current was not steady during the period of time covered by the three survey
elements (temperature/depth contour, satellite image, and hydrographic survey).
Propagation of features can be deduced by comparing measurements taken in the same
area at different times. The chronology of the survey is given in Table 2.a, and

llustrated in Fig. 2.1, to facilitate these comparisons.

2.2 Temperaturel/depth contour survey: analysis and discussion

The temperature/depth contour defined by the intersection of the 15 C isotherm
and the 200 m depth surface was followed for over 2500 km during the period
16-22 March. This was accomplished by deploying expendable bathythermographs
(XBTs) every 15 minutes or so and correcting the ship’s heading based on the
temperature at 200 m. Each XBT generated a 0 to 700 m temperature profile.

The maximum horizontal temperature gradient in the Gulf Stream, where the
temperature/depth contour technique was developed, is centered near 15 C at 200 m, as
determined from continuous temperature measurements taken by an instrument towed
across the Stream at that level (Fuglister and Voorhis, 1965).

The maximum horizontal temperature gradient in the Agulhas and Agulhas
Return Currents seems to be centered near 13.5 C at 200 m, with large temperature
gradients observed for the range 12.5 - 16.0 C. These estimates are derived from the
six 1985 Agulhas and Agulhas CTD transects (see Fig. 2.2 and Atlas sections of

potential temperature). The 15 C/200 m temperature/depth contour does lie within the
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Table 2.a — Dates of 1985 Agulhas Retroflection survey elements.

Date Timeline Survey element

20 February | Cape Town warm-core ring transect
21
22

March Agulhas transect D

o o©

10
11
12
13
14 Northemmost station of Return Current transect F (sta. 267)

Agulhas transect B and cold-core ring transect

Agulhas transect A (proceeding onshore)
15
16 Temperature/depth contour survey
17
18
19
20
21
22
23
23
24
25 Satellite images
26 I Agulhas transect C
27

Retumn Current transect F (except sta. 267)

Return Current transect E
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Fig. 2.2 — Temperature at 200 m, 1985 CTD/O Agulhas and Agulhas Return Current

transect stations. The high temperature gradient at 200 m appe

ars to be centered at

approximately 13.5 C, the central temperature of the interval 12.5 - 14.5 C where few
temperature observations at 200 m fall. This is, in effect, a Monte Carlo method for
finding the temperature range of the high temperature gradient at 200 m, in the absence
of continuous temperature measurements across the front.
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high temperature gradient region of the Agulhas and Agulhas Return Currents, slightly
to the warm side of the maximum gradient.

Extraction of temperature/depth contour. The temperature/depth contour
(Fig. 1.4 and elsewhere) was extracted from the raw ship track (Fig. 2.3) and the XBT
temperatures at 200 m. Extracting the real temperature/depth contour from the raw ship

track was important for three reasons:

+ A meaningful along-contour distance can be computed from the extracted
temperature/depth contour, but not from the raw ship track, along which
navigation noise accumulates at a variable rate.

+ The sharpness of the major tums in the current can be verified to be real
features of the current, rather than an artifact of the navigation. The
current's compass heading and radius of curvature can be computed directly
from the temperature/depth contour, but not from the raw ship track.

» The shape of smaller features in the current (like the meanders along the
continental slope) can be seen more clearly after the navigation noise has
been removed.

The extraction of the temperature/depth contour was accomplished in a two-step
interpolation process. The location of each XBT drop was determined in the first step,

by linearly interpolating between pairs of position fixes (X) that bracketed XBT drops,

using time ( 7) as the interpolation parameter:

TXBT - TFIX-
Xxpr = Xrix. + ——————(Xr1x+ - XFiIx.) (2.2)
TFIX+ - TFIX-

The subscripts FIX-, XBT, and FIX+ correspond to the position fix preceding the XBT

drop, the XBT drop, and the position fix following the drop. Position fixes were
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Fig. 2.3 — Raw ship track from which temperature/depth contour was extracted
(see text).
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received from transit satellites every 2-3 hours and the Global Positioning System
(GPS) with an accuracy of better than 1 km. Errors in dead reckoning between fixes
are at most 2 m s-! (maximum current speed error plus allowance for windage) over
three hours, or about 20 km.

The second extraction/interpolation step was to find the position of the 15 C
isotherm at 200 m, X;5/200, by linearly interpolating between positions of XBTs that

bracketed the isotherm, using temperature (7) at 200 m as the interpolation parameter:

15C-T R
X151200 = XxBT- + XBT (XxBT+ - XXBT-) 2.3)
TxBr+ - TxBT-

The surface temperature and the 10 C depth at the contour were interpolated in a similar
way.

Contour location errors and remaining small-scale jaggedness. The resulting
contour position, shown in Fig. 1.4 and elsewhere, is geographically accurate to about
30 km, estimating from the dead reckoning error plus smaller uncorrelated errors in
satellite fixes, temperature measurements, and in the interpolation procedure. The scale
of the remaining small-scale jaggedness in the contour suggests that position errors are
in fact smaller than this.

The largest amplitude (about 20 km cross stream) small-scale jaggedness in the
contour occurs as the Return Current approaches the Agulhas Plateau. This jaggedness
is not an artifact of any of the errors listed above: examining individual XBT traces
reveals that it is the rea.l signal of thermohaline interleaving between warm, salty
Retroflection water and cold, fresh Circumpolar water across the Return Current. The
interleaving means that temperature and density at constant depth are not related through
a perfectly single-valued temperature-salinity relation, but the relation is sufficiently tight

that the resulting cross-stream displacements are too small to impair the contour's
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usefulness as an indicator of the path of the current. Another indication of the
thermohaline interleaving at 15 C is shown by the 10 C isotherm depth along the
temperature/depth contour (Fig. 2.5, middle panel) which oscillates at the small-scale
jaggedness in the contour; the interleaving vertical scale is smaller than the distance
between the 15 C and 10 C isotherms. Elsewhere in the Return Current the 10 C
isotherm depth is relatively constant.

Validity of assumptions. How well are the assumptions underlying the
horizontal temperature front/current relationship met in the Retroflection?

Assumption (i) above: how geostrophic is the alongstream flow? Alongstream
flow is geostrophic to order 3 x 10-2, except in the vicinity of sharp tums in the current
seen in the temperature/depth contour, where alongstream velocities can be ageostrophic
to order 0.5. These are the values of the Rossby number, € = 7% where U is the
alongstream velocity, f the Coriolis parameter, and L the alongstream length scale
(radius of curvature), using the values U= 1 ms-1 f= 10451, L = 300 km away
from the sharp turns, and L = 20 km near them. The satellite image is at least partially
obscured by clouds at each of the sharp turns in the contour, so unfortunately there is no
independent information on the flow at these locations. Sharp meander crests have been
found to be preferred locations for cross-frontal motion in an analysis of isopycnal float
tracks in the Gulf Stream (Bower, 1988), in agreement with this scaling.

Assumption (ii) above: how tight is the potential temperature/salinity relation,
i.e., how well can density be inferred from temperature and pressure alone? The largest
variation in salinity on the 15 C isotherm is in the Retumn Current, as mentioned above,
where strong thermohaline interleaving is occurring. The interleaving is strong enough
to displace the temperature/depth contour 20 km cross-stream from the density/depth
contour to which it corresponds in the mean. The potential temperature and salinity at

CTD stations bracketing the 15 C temperature/200 m depth contour in the Agulhas
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Current is shown in Fig. 2.4. Here, variations of about 0.1 salinity are observed at
15 C, corresponding to a density difference of about 0.08 kg m-3. The 15 C isotherm
falls just about at the boundary between the tight South Indian Central Water
temperature/salinity relation at cooler temperatures, and the Tropical
Thermocline/Subtropical Surface Water temperature/salinity front at warmer
temperatures (Gordon, et al., 1987).

Assumption (iii) above: how well does the high velocity current core line up
vertically? The horizontal temperature gradient maximum, the horizontal velocity
maximum, at all levels, and the 15 C temperature/200 m depth location are all found
within a 50 km cross-stream interval at the CTD/O, transects. The velocity sections
(see Atlas) show the Agulhas Current horizontal velocity maximum leaning slightly
towards the continental slope, with the velocity maximum at depth 10 - 50 km further
offshore than the surface maximum. Downstream bottom velocities on the upper slope
would move the velocity maximum at all levels further onshore. The mass transport
balance implies that such bottom velocities occur at some transects (see Chapter 3). The
Return Current horizontal velocity maximum leans south at one of the two CTD
transects and north at the other, both by small amounts. The 15 C temperature/200 m
depth location at the transects lies between 40 km on the cold side and 20 km on the
warmn side of the surface velocity maximum.

To summarize, the underlying assumptions relating the current's velocity,
temperature gradient field, and the temperature/depth contour are all met fairly well,
except at the sharp turns in the contour where ageostrophic flow may not be negligible.
An isopycnal float experiment could be designed to test the hypothesis that cross-frontal

motion is greatest at sharp turns in the Retroflection.
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Fig. 2.4 — Potential temperature vs. salinity at CTD stations bracketing
15 C temperature/200 m depth location in Agulhas Current. Capital letters A-D refer
to the transect name used in the Atlas. Stations marked with a 'c' are on the cold,
inshore side of the current, while those marked with a 'w' are on the warm, offshore
side. Salinity variation at 15 C is marked. Note the relatively fresh thermocline water
at the warm side of Transect C, evidently South Atlantic water that has entered from the
south with the local recirculation located between the cold-core ring and the second
Retroflection branch (see transport pattern discussion).
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2.3 Composite satellite image: processing and discussion of observations

The two Retroflection branches can be seen clearly over much of their length in a
composite satellite image (Fig. 1.5) contemporaneous with the March 1985 survey
program. The warm core follows the first upstream branch, appearing as a dark streak
along the continental slope and in a northwest-to-southeast band cutting across the
middle of the image. A strong surface temperature gradient follows the second
downstream branch, paralleling the temperature/depth contour location. The cold-core
ring has no surface temperature signature; North Atlantic cold-core rings in summer are
similarly invisible to satellite imagery.

As was mentioned in the Introduction, the composite satellite infrared sea
surface temperature image was constructed from three daily images collected on 25, 26,
and 27 March 1985 by the Advanced High Resolution Radiometer (AVHRR) on board
a NOAA TIROS-N sun-synchronous satellite. Radiometer channel 4 (wavelengths
10.5 - 11.3 pm) thermal infrared radiation intensity measurements were registered to
geographical coordinates (Luetkemeyer, 1987). The composite image was generated by
retaining the warmest daily value in each 4 km x 4 km pixel to produce a single
relatively cloud-free image (Fig. 1.5).

Relationship between image brightness and temperature. Temperature values

corresponding to satellite image brightness values can be inferred by comparing

(i) surface temperature values along the temperature/depth contour (Fig. 2.5.
upper panel), and

(ii) brightness values along the temperature/depth contour (Fig. 2.6).

The warm core temperature is < 24.5 C (2 135 brightness). Cloud and sea surface

temperature brightness values appear as two distinct peaks in a histogram of brightness
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values from the three daily images (Fig. 2.7). The colder clouds peak at 175-200
brightness while the warmer sea surface peaks at 135-165 brightness. Sea surface
temperature values for the CTD survey are shown in Fig. 1.6.

Warm core displacement during time between XBT survey and satellite image.
The satellite brightness and XBT surface temperature curves are fairly similar in overall
shape, except (1) at the very end of the contour at about 2300 km along-contour
distance and (2) where the satellite brightness is still contaminated by low cloud
(brightness values >170). Near the end of the contour, the brightness drops (i.e.,
satellite-derived temperature rises) abruptly almost to the value observed at the
beginning of the contour, while the XBT temperature stays relatively constant. This
suggests that the warm core moved southwestward about 150 km onto the contour,
over the 4-5 days between the end of the XBT survey on 22 March and the satellite
image taken 26 March when this area was not obscured by clouds. The northeastern
side of the cold-core ring (see Fig. 1.7 and 1.8) parallels the first retroflection branch

on which the warm core rides. This ring was moving southwestwards also, judging

Fig. 2.4 caption, continued:

Upper panel: surface temperature values temperature/depth contour. Open circles:
interpolated from surface temperature measured by the XBTs to the temperature/depth
contour location. Dots: bucket temperatures.

Middle panel: depth of 10 C isotherm along the temperature/depth contour. Vertical
lines denote location of CTD transects B-F across the current; lines extend over 10 C
depth range observed at transect. Transect letter-names same as those used in Atlas and
elsewhere. Transect A is upstream of beginning of contour. Dots at 850 m denote
missing data. Note missing data clustered around Transect B, where contour and
current meandered up onto the continental slope as far as the ~400 m isobath.

Bottom panel: contour heading, with north = 0 degrees. Radius of curvature can be
estimated from this plot. Vertical lines denote sharp tums in the current path, and other
features: separation of current from continental slope at 600 km, abrupt southward tumn
at 900 km, abrupt eastward tumn at 1200 km, crest of broad northward meander at
1600 km, and sharp turn towards the Agulhas Plateau at 2000 km.
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from the density field at two CTD/O; transects across the ring that were taken 10 days
apart.

The nominal displacement speed implied by comparison of the XBT and satellite
surface temperature patterns is 0.3 - 0.4 ms-!. A Rossby number ¢ for the
displacement is U,/U g with a value of 0.3 to 0.4, assuming that the warm-core
displacement southwestwards is due entirely to cross-stream ageostrophic velocity U,,
and that the downstream geostrophic velocity Ug is I m s-1. This value for € is similar
to values at sharp turns in the current path (see above), and from isopycnal shear and

curvature vorticity at the CTD transects (see Chapter 5).

2.4 Sea surface temperature

Comparison with climatology. The 224 C warm core in this image extends
considerably farther west and southeast than the 24 C isotherm in the climatological
monthly average for February (the warmest month; Fig. 2.8). This is not surprising,
given that the warm Retroflection is extending about as far to the west and southeast as
it has ever been seen to do (Lutjeharms and van Ballegooyen, 1988). Representative
positions derived from subjective contouring of unregistered satellite images are shown
in Fig. 2.9 and 2.10.

Seasonal surface temperature variation vs. variations due to meandering. The
seasonal difference between the warmest (February) and coldest (August, not shown)
months - is about 4 C everywhere. Variations in surface temperature over shorter time
scales, associated with changes in the current location (meandering), can be over twice
as large: the sea surface temperature drop, from the warm core across the
Agulhas/Agulhas Return Current, is 6 to 9 C (from 24 C to 13 - 18 C) in the 1985
observations, a subrange of the 6 to 13 C range observed in repeated Return Current

crossings analyzed by Lutjeharms and Valentine (1984). The largest values are
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Fig. 2.8 — Climatological average sea surface for February, the warmest month.
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sea surface temperature from CTD/O3 survey (Fig. 1.6).
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observed when the Subtropical Convergence (a strong surface temperature front found
south of the Retroflection) coalesces with the Return Current. Retroflection size
variation itself was once thought to be mainly seasonal, based on an analysis of a limited
number of satellite images (Fig. 2.9; Lutjeharms and Valentine, 1984), but mesoscale
ring formation events were found to dominate in later work by the same principal author
using many more images (Fig. 2.10 and 2.11; Lutjeharms and van Ballegooyen,
1988).

Surface temperature gradients along remperature/depth contour. The temperature
gradient along the temperature/depth contour is one piece of evidence for the Agulhas
Current bifurcation. The wanm core evidently peels off with the first smaller-transport
Retroflection branch, while the temperature/depth contour follows the larger-transport
second branch. Could the temperature gradient along the contour be caused by direct
heat loss to the atmosphere? Consider a slab mixed layer of constant depth h, and
vertically uniform temperature T, moving along the temperature/depth contour with

[ . .
speed u = Z—r; [ 1s distance along the contour. The rate of air-sea heat flux, %2 per unit

surface area, A, from the slab is given by

1D 0 dT
X#: IpCp uEI—dz (2.4)
-h

The relevant Agulhas values are:

+  h ~ 50 m, determined by examining XBT traces,

u21ms1 from velocity computed relative to 2400 dbar (see Atlas

sections of velocity), and

. %: -4 C/600 km, from the observed drop in XBT surface temperature

between 6(0) and 1200 km along-contour distance (see Fig. 2.5, upper

panel).
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Fig. 2.9 - 1978 to 1982 Agulhas and Agulhas Return Current paths, traced by hand
from satellite infrared images of sea surface temperature obtained from a METEOSAT
satellite during that period. Upper panel, southern hemisphere winter months; lower
panel, southern hemisphere summer months. This is a reproduction of Fig. 6 of
Lutjeharms and Valentine (1984).
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Fig. 2.11 — Zonal location of the westernmost limit of Agulhas Retroflection for 1978,
1979, and 1982, plotted as a function of time in days. Solid lines denote a warm feature
that is visibly attached to the Retroflection. Dotted lines denote warm features that are
either visibly detached, or whose attachment cannot be determined due to clouds. This
is a reproduction of Fig. 7 of Lutjeharms and van Ballegooyen (1988).
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The rate of air-sea heat flux per unit area that results from Eq. (2.4) and these values is

<-1200 W m-2. This implies an air-sea temperature difference AT of <-30 C, (and

thus an air temperature of =254 C!) estimated from an empirical parametric formula

(Haney, 1971)

D
5?: G(A) AT (2.5)

|~

where G =43 W m-2 C-! at A = 40° latitude; G varies by only 20% over all
latitudes. This air-sea temperature difference is too large by an order of magnitude, with
the climatological mean AT, only ~-3 C. The air-sea heat flux maximum in the
Retroflection reported by Bunker (1980} is -130 W m-2. Thus we may conclude that
changes in surface temperature along the temperature/depth contour must not be forced

principally by atmospheric forcing.

2.5 Transport pattern

Only those transport field characteristics relevant to the path of the current and
the surface temperature pattern are presented here; see Chapter 3 for further discussion
of transport.

The surface warm core as seen in the satellite image retroflects at or west of the
first Retroflection transport branch. The two Retroﬁection branches can be seen in the
overall transport pattern (Fig. 2.12) derived from the CTD survey. Stations used in
constructing this pattern were taken during 8-16 and 22-26 March.

The current, as has been mentioned, retroflected in two unequal branches, the
first with 35 Sv and the second with 55 Sv transport (plus a 40 Sv locally recirculating
component), relative to 2400 dbar. The location of first Retroflection branch in the
transport field is displaced 2300 km to the northeast of the warm core location in the

satellite image. The transport observations preceded the satellite image by 9 - 15 days,
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with the CTD/O stations used to determine the transport of the first branch taken
12 - 16 March, and the composite satellite image taken 25 - 27 March. For the main
northwest-southeast trending warm core to have followed the first Retroflection branch,
the first branch would have to have moved southwestward at a speed of
0.2 - 0.4 ms-1. This is similar to the range of 0.3 - 0.4 ms-! estimated above
(Sec. 2.3) from the movement of the front during the time between the XBT surface

temperatures and the satellite image.

2.6 Conclusions

The Agulhas Current in 1985 retroflected in two branches. The current's warm
core (224 C) followed the first branch, which had a transport of about 35 Sv. The
15 C temperature/200 m depth contour followed the second branch, which had a
maximum observed transport of 95 Sv, composed of 55 Sv supplied by the Agulhas
Current, and 40 Sv supplied by local recirculation. Transports were computed relative
to 2400 dbar.

The first branch moved southwestward at a speed of 0.2-0.4ms-1,
estimating from differences between the three survey elements (tempsrature/depth
contour, satellite image, and transport pattern) taken at slightly different times. The
displacement has a Rossby number of 0.2 - (.4, assuming it was purely ageosirophic.

The temperature/depth contour survey gives an accurate picture of the location of
the current's high velocities and high horizontal temperature gradients. The contour and
the current core at all vertical levels are found within 50 km cross-stream in the six
transects across the current. The largest small-scale jaggedness in the contour is due to
thermohaline interleaving; its cross-stream amplitude is too small /220 km) to distort
the contour significantly. The 15 C temperature/200 m depth contour lies within the

large temperature gradient region of the Agulhas and Agulhas Return Currents, judging
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from the six transects across the current, with the maximum horizontal temperature
gradient at 200 m centered near 13.5 C, and large gradients observed in the range
12.5-16.0C.

The contour shows much of the current curvature to be concentrated in three
sharp tums in the current path. The turns seem to be a likely location for enhanced
cross-frontal motion, since alongstream velocity is ageostrophic to order 0.5 at the
turns, but the dynamics of the tums and the current structure in their vicinity are open
questions.

The observed surface temperature field is considerably warmer than the
climatological monthly average for the warmest month. This is a consequence of the
Retroflection’s position near the western and southeastern limit of its range. The large
surface temperature gradient along the temperature/depth contour is caused by the
current bifurcation, with most of the warm core retroflecting at or just west of the first
Retroflection branch. The surface temperature gradient along the contour is an order of

magnitude too large to be caused by direct heat loss to the atmosphere.
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Chapter 3: Current transport and the interior circulation

3.1 Introduction

Here we consider several questions concerning the transport field:

How large is the Agulhas Current transport compared to the wind- and
thermohaline-driven transport in the interior of the South Indian subtropical
gyre? How does transport vary with the reference level used for the
transport integral? What factors constrain reference level choice?

Does Agulhas Current transport always increase monotonically downstream
until the current separates from the coast? Current transport deduced from
wind and thermohaline interior forcing increases monotonically, and positive
values for transport change per downstream distance were reported by
previous authors (Harris and van Foreest, 1978; Gordon et al., 1987)
based upon a few widely-spaced transport measuiements.

What is the Retum Current transport? How far south must transport be
integrated for Retum Current transport to balance Agulhas Current transport?

The transport field in the 1985 Cape Town Eddy and the warm water link between the

South Indian and South Atlantic Oceans (Gordon, 1985, 1986) are considered in

Chs. 6 and 8. The transport field in the cold core ring found within the Retroflection in

1985 is discussed in Ch. 7.

Transects across the Agulhas Current and Agulhas Return Current taken during

the 1985 Retroflection and historical transects will be compared throughout the present

chapter. There are eight historical Agulhas Current transects to the west of the Agulhas

Plateau eastern flank (28°E). Six of these transects were taken at intervals down the

coast to a depth of 1500 m during the 1969 survey ; these are discussed by Harris and

van Foreest (1978 ). The other two transects, both composed of CTD stations covering
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the full water depth, were obtained at 21°E by Jacobs and Georgi (1977}, and at 23°E
by Gordon et al. (1987).

There are four historical Agulhas Return Current transects. Two of these are
located at 21°E near the separation of the current from the coast, one taken by Jacobs
and Georgi (1977), covering the full water depth, and the oth:r just grazing the
Retroflection by Gordon et al. (1987), with most stations to 1500 m. The remaining
two transects are located further downstream on the northwestern flank of the Agulhas
Plateau, taken by Harris and van Foreest (1978) to 1500 m and Gordon et al. (1987)
covering the full water column.

The 1985 survey substantially increases the number of Agulhas and Agulhas
Return Current transects in the Retroflection area, especially the number of
full-water-column transects. The four 1985 Agulhas Current transects are labelled A
through D, proceeding downstream. The two 1985 Agulhas Retum Current transects
are labelled E and F, again proceeding downstream. Fig. 3.1 shows the locations of
the transects, along with the bottom topography, and the location of the 15 C
temperature/200 m depth contour as shown by the XBT survey. Table 3.a gives, for
each transect station, station number, deepest observed values, bottom depth, along-
transect distance, depth of the 15 C isotherm, and the latitude, longitude, and date of
observation. Along-transect distance is given with positive values on the warm side of
the current, relative to an origin at the 15 C temperature/200 m depth location, chosen
for consistency with the XBT survey of the 15 C temperature/200 m depth contour.
End point stations in the transects that are outside the current (as defined by isopycnal

tilts and transports) are shown in parentheses.!

ITransect C as shown in the atlas includes stations 291-298. Transport calculations at
transect C add on station 248 or 249, ~70 km away.
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All six 1985 CTD/O> transects are nearly perpendicular (90  20°) to the axis
of the flow, so cross-stream and along-transect distance can be used interchangeably;
their ratio is always >0.94 [i.e., sin (90 £ 20°)]. Five of the six transects cross
current axis (see Ch. 2) at approximately right angles, judging from angle between the
transects and the 15 C temperature/200 m deptl: contour (see Ch. 2).! The sixth
transect is upstream of the beginning of the XBT survey, perpendicular to the

continental slope from which the current has not yet begun separating.

3.2 Agulhas Current transports and the interior circulation

Previous Agulhas Current transport observations show transport increasing
rather steadily for 1200 km downstream, from about 35 Sv at 30°S to almost 140 Sv
at the southern tip of Africa where the current separates from the continental slope. The
historical transport observations, taken by Toole and Raymer (1985), Griindlingh
(1980), Gordon et al., (1987), and Jacobs and Georgi (1977), in downstream order, are
shown in Fig. 3.2 and Table 3.b. The 1985 transports are also shown in Fig. 3.2 and
in Table 3.c.

The increase in transport downstream was estimated by Griindlingh to be 6 Sv
per 100 km, between his own 75 Sv matched? transport to the botiom at 31°S and
Jacobs and Georgi’s 137 Sv geostrophic transport relative to a bottom reference level at

19°E off the Agulhas Bank. The increase was re-estimated by Gordon et al. to be

1Since the current axis may have moved during the time it took to make the CTD/O> and
the XBT 15 C/200 m contour surveys, each transect/current axis crossing angle was
estimated from (a) the transect heading and (b) the range of hea:iings of the XBT

15 C/200 m contour over a distance of 2 v 1, centered on the transect/contour
intersection; v is the local meander propagation speed (~ 20 km day~1, Griindlingh,

1978 ) and 1, is the time elapsed between the crossing of the CTD/O; transect n and the
XBT contour. The factor of 2 implies that the sign of v is not known.
2See note, Table 3.b.
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Table 3.b - Historical Agulhas Current transports

Transports (Sv) above reference level (dbar)
4

Source Locati

Toole and Raymer, Durban, 30°S 44a

1985

Griindlingh, 1980  Port Edwards, 62¢ 75bc
31°S

Gordonetal., 1987 Agulhas Passage, 70d g3d.e 95d
23°E

Jacobs and Georgi, Agulhas Bank, 80f 137

1977 21°E .

Harris and van 20 - 28°E, south 30-408
Foreest, 1978 of 33°S

aderived from a composite thermal wind/density field to the ocean bottom within
100 km of the coast, referenced to composite absolute velocity data in the upper
50 m.

bcomputed by multiplying 0 — 1000 m transport by 1.20, Duncan’s (1970) ratio
of total to 0 — 1000 m transport. My calculation in square brackets.

Cderived from geostrophic shear measured to 1000 m, referenced to direct
velocity measurements from a current meter suspended at 100 m depth.

dincludes 21 Sv from transport extrapolation inshore of station 49.
°my calculation.
frelative to 900 m.

8Estimated from their Fig. 3; transports are computed relative to 1100 dbar (or the
'27.2 ot level'?), not 1000 dbar.
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Table 3.c - Agulhas Current transports, Luyten & Toole survey,
Feb. - Mar. 1985, R/V Thomas Washington, Cruise 3

Transports (Sv) above&below reference level (dbar)
Secti . 1000 di 1500 di 2400 d B a_
AQR6°E) 277-270 38 -80 69 -31 91 -17 105
B (22°E) 256-260 14 -21 26 -8 34 (56 0 34 (56)b

C(Q0E) 29173/5/1/8 30 -55 49 -19 65 -2 71
c C+249 33 -67 55 -29 76 [87]¢ -4 85 [97]¢
c" C+248 34 -68 57 -28 79 (90)c -3 83 [95])¢

D (19°E)  243-247 42 -83 73 -49 99 [111]¢ -21  116[131]¢

aDeepest common level of station pairs; no extrapolation of shear to actual bottom
depth.

bTransects A and B plus other stations form a closed box; adjusted transport at
transect B to balance the box is shown in parentheses.

CValue in brackets includes an estimate of missed transport obtained by
extrapolating observed transport per unit width (see text).
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2.7 Sv per 100 km downstream between Griindlingh’s observation and their own at
23°E, and 13 Sv per 100 km between their observation and Jacobs and Georgi's.

The 1985 transport observations exhibit transport values comparable the
historical observations — except for drastically reduced transport at Transect B
(Fig. 3.2 and Table 3.c). Some of this reduction persists at the next transect
downstream, Transect C.

How do the historical and 1985 Agulhas Current transports and downstream
changes in transport compare with values for a linear western boundary current that
simply balances the net ocean interior transport? Interior transport, and thus the linear
western boundary current flow, is estimated here from Veronis’ (1973) two-layer world
ocean circulation model. The interior transport has two parts: (i) Sverdrup transport
derived from wind field observations and (ii) net eastern boundary transports, derived
from alongshore thermocline slope representing the effects of basin-wide thermohaline
forcing, plus an adjustment for Sverdrup transport impinging on the eastern boundary.
The western boundary (Agulhas) current transport is just equal and opposite to the
zonally-integrated meridional interior transport.

According to Veronis’s calculations, the western boundary current transport
grows from zero at 21°S to a maximum of 72 Sv at 36°S. This includes 5 Sv from
eastern boundary transport due to thermohaline forcing. Transport increase per
downstream distauce in the modelled Agulhas Current reaches a maximum of 9 Sv per
degree of latitude at about 25°S, decreasing to zero at 37°S. A degree of latitude
corresponds to ~200 km downstream distance along the African continental slope south
of 30°S, since the slope runs northeast to southwest there.

Veronis’s transport and transport increase values should be revised downward
in light of more recent wind stress observations. Wind stress values available to

Veronis seem to have significantly overestimated the strength of the westerlies in the 35
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to 60°S latitude band. The maximum zonally-averaged westerly wind stress in
Hellerman and Rosenstein (1983) is half as strong (0.1 instead of 0.2 N m-2, with a
standard error of 0.05 N m—2) and 2-3° further north of the analogous feature in
Hellerman (1967). Hellerman and Rosenstein report 40 £ 8 Sv in January and 60 Sv
(no error reported) in July, both at at 32°S, for the maximum Sverdrup transport
integrated across the S. Indian Ocean. The sum of the thermohaline component (S Sv)
and the average of the January and July values (50 £ >8 Sv) is 55 £ >8 Sv,
significantly less than Veronis’ value of 72 Sv.

The increase in transport downstream is 3 Sv per 100 km, using Veronis’ wind
values, and 2 Sv per 100 km using the new wind observations, at the latitudes (31 to
37°S) of the transects cited in Fig. 3.2 and Table 3.b.

The observed transport exceeds its maximum forced value of 55 + >8 Sv at all
1985 and historical transects, except Transect B, for 2400 dbar and deepest common
reference levels3 (Fig. 3.3). The maximum observed transport (Jacobs and Georgi's
value computed to deepest common levels) is over twice the maximum forced value. A
reference level choice of less than 1500 dbar would be required to bring transport at
Transect D in line with the maximum forced value, and of less than 1000 dbar to
reduce transport at Jacobs and Georgi's transect to this value. But reference levels this
shallow are implausible: the deep oxygen minimum of S. Indian Ocean origin found at
850 — 1800 dbar in the Current is strong evidence for a reference level at greater
depths. Reference level choice is discussed further below.

The downstream change in transport expected from interior circulation theory

has been compared by previous authors to the observed alongstream change in

3E. g., the deepest common level (dcl)of a pair of stations ending at 1000 m and
1300 m is 1300 m. Density and derived fields are sometimes extrapolated from the dcl
to the bottom, a procedure called Helland-Hansening (Helland-Hansen, 1905).
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transport. Griindlingh (1980) noted that the 6 Sv per 100 km increase between his and
Jacobs and Georgi's transports agreed with the transport increase value in Veronis’
model; and Gordon et al. discussed possible interpretations of the rather different rates
of alongstream increase between Griindlingh’s observation and theirs (2.7 Sv per
100 km), and between theirs and Jacobs and Georgi’s (13 Sv per 100 km).

Possibly the rates of observed and modelled increase were compared rather than
the transports themselves with the idea that changes in transport were less sensitive than
the transports themselves to reference level choice. This is not the case. The two
quantities both vary with reference level: at each transect or pair of transects, the value
of either quantity for a bottom reference level is 2—4 times the value for a 1000 dbar
reference level (Fig. 3.3 —3.5). Note that Fig. 3.3 shows observed transport values
only, while Fig. 3.4 and 3.5 show transport change values derived from both observed
and adjusted transport values. The observed transport is just the integrated geostrophic
flow between CTD/O} stations, while the adjusted transport includes horizontal
extrapolation of the transport per unit width function where transects did not completely
cross the current, and adjustments for mass balance within boxes enclosed by the
CTD/O; survey and the slope (explained further below). Transport adjustments in deep
water were assumed to have the same variation with reference level as observed
transport.

Nearly all the downstream transport change magnitudes exceed the maximum
forced value of 9 Sv per 100 km found 1000 km to the north at 25°S, by up to a factor
of six (Fig.3.4-3.5); the forced value at the transect latitudes is only
2 Sv per 100 km . Also, transport decreases between Transects A and B, opposite in

sign from the transport increase expected from the returning interior transport. The

61




Transport change magnitude
Sv /100 km

Transport change magnitude
Sv/ 100 km

Fig. 3.4

Fig. 3.5

Transport change vs. reference level
using unadjusted transports

40
a
T ¢ e A.-B
30 + ® e C"-B
) + @ D-C
) X Grndlg-Grdn
. ® + Grdn-J&G
20 g o D-A
]
1 o °
10 ~
o max forced transport change
o
=]
0 ——— ——
o] 1000 2000 deepest common level
Reference level, dbar
40 using adjusted transports
| ]
S
304 §
5
{ © °
g °
204 8
(]
I 3
2 2
& .
10 ﬁ_ g ®
(]
® * a
o
o o x
0 1 M T v ¥ v
0 1000 2000 deepest common level
Reference level, dbar
Aguthas Current downstream transport change
magnitudes. Computed from unadjusted transport
values in Table 3.b and 3.c.
Agulhas Current downstream transport change

magnitudes. Computed from adjusted transport values
in Table 3.b and 3.c.

62




Griindlingh — Gordon et al. value of 2.7 Sv per 100 km tumns out to have the smallest
magnitude of all the (adjusted) estimates.4
Even generous error estimates cannot account for the observed transport
changes in excess of the forced rates. The transport change is a gradient quantity and
thus sensitive to errors such as missed transport, particularly at small transect
separations alongstream. Even so, the difference between transport change computed
from observed and from adjusted transports is still small compared to their difference
from the expected forced value. The relatively low values of alongstream increase
between A — D (Fig. 3.4 and 3.5) are, in effect, the result of aliasing errors.
Evidently, then, the Agulhas transport is significantly larger and more variable
alongstream than predicted by purely linear, thermohaline- and wind-driven dynamics.
This indicates that (i) the Retroflection is recirculating vigorously, and (ii) that the
alongstream length scale of the transport is much smaller than the length scale over
which the interior forcing varies, and, in fact, smaller than the scale of the Retroflection
itself. As we shall see, the downstream variation in tracer quantities supports both of

these conclusions.

41t is tempting to call either -AMS— or (—TT_OES_) the recirculation index, but Rhines
ATfo reed forced

(1983) has already used this name for the ratio of (a) the meridional velocity scale

implied by Ekman pumping and continuity to (b) the meridional velocity scale implied

by the Sverdrup relation. (Observed transport represented by T,p5, and the returmning

interior transport by T,,ced, and A denotes the downstream change per unit distance.)

Recirculation has still other special meanings: in thermocline theory, "if the
fluid . . . recirculates many times . . . before having its properties reset at the surface
outcrop . . . a layer [is] considered to be unventilated " (Keffer, 1985). The 'Gulf
Stream recirculation’ refers to that part of the N. Atlantic subtropical gyre interior
circulation that impinges upon the Gulf Stream north of Florida Straits. The Peclet
number - ratio of velocities along to velocities across tracer isopleths — is sometimes
called the 'index of recirculation’ in advective-diffusive models. 'Recirculation' also
can refer — as it does in this thesis — to the western boundary current transport in
excess of the wind— and thermohaline-driven interior transport (Munk and
Carrier, 1950).
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These ideas are not entirely new. Griindlingh (1978) suggested that the Agulhas
and Agulhas Return Current flow may be composed of a series of linked anticyclonic
eddies, and Harris and van Foreest (1978) noted the premature retroflection of some
dynamic isobars upstream of the main Retroflection in the 1969 survey. The 1985
survey confirms the existence of these phenomena, and provides quantitative measures

of their importance and sensitivity to reference level.

3.3 Reference level choice

A deepest common reference level (level of no motion) has the practical
advantage of producing a single number for transport, instead of two numbers, one
above and one below the reference level. Such a reference level produces the maximum
above-reference—level thermal wind velocities and transport magnitudes when
monotonic vertical shear strongly predominates at all levels, as it does in the Agulhas.
(Downstream bottom velocities, of course, increase the velocities and transports above
the purely thermal-wind values.)

A reference level in the vicinity of 2500 dbar is suggested by several traditional

lines of reasoning:

+ Water mass cores. The deep oxygen minimum at §50-1800 dbar from
S. Indian Ocean sources loses strength proceeding downstream, east to
west, in the Agulhas. The deep salinity maximum at 2300 - 3100 dbar of
N. Atlantic origin loses strength from west to east throughout the
Retroflection (see Chapter 4). This implies a velocity reference level
between these two levels, with westward property advection at the oxygen
minimum and eastward property advection at the salinity minimum.
However, this evidence is not conclusive, since processes other than mean
advection are important in maintaining the extrema field. In the Retroflection
region, eddy energies are as high as anywhere in the world ocean (Cheney et




al., 1983) so stirring due to unsteady advection undoubtedly plays an
important role.

Topographic constraints. Flow from the bottom up to 2500-3000 m is
connected more directly to S. Atlantic and Circumpolar than to S. Indian
sources of mass, momentum, and water mass characteristics. This is
because the Natal Valley through which the Agulhas Current flows is a cul-
de-sac opening to the southwest. The Valley is bounded, north of 35°S and
below 3000 m, to the west by the African slope, to the north by the
Mogambique Channel, and to the east by the Mogambique Plateau. A
2500 m reference level in the Retroflection implies deep eastward flow
along the African continental slope, bringing water from S. Atlantic sources
into the Natal Valley.

« Topographic steering. Finally, the fact that the Agulhas and Agulhas Retumn
Currents are located over topography as shallow as 2500 m (Transects B,
E, and F) suggests that velocities at and below 2500 m are too weak to
couple the flow to the topography. Better understanding of topographic
control dynamics is necessary to quantify this impression.

The use of a 2500 m reference level was suggested by Duncan (1970), who mentioned
the water mass cores and the topographic constraint of the Mogambique Channel.®
Duncan assumed, however, that the Agulhas was supplied through the Channel itself.
More recent studies (Harris, 1972, Saetre and Jorge da Silvia, 1984, and Fu, 1986,
discussed by Gordon et al., 1987) found only 0 — 10 Sv throughflow, implying that

the Agulhas is supplied principally from the east over the Mogambique Plateau.

6Since Duncan had a limited amount of deep data, he computed the ratio
transport above 1500 m
(transport above 2500 m

2500 m. Then, transport relative to 1500 m at shallow (~1500 m) station pairs was
divided by this ratio (0.80) to get transport relative to 2500 m.

at the deep station pairs, for transport computed relative to
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Agulhas transport integrated across the current above a 2400 dbar reference level
is 85 — 100% of the transport above deepest common levels at the 1985 Agulhas
transects. The 100% value occurs at Transect B where the depth is < 2400 dbar all the
way across the Current. The ratio at individual station pairs in the Agulhas of transport
above a 2400 dbar reference to transport above deepest common levels is 65 — 100%.

The 100% value occurs where the depth is < 2400 dbar.”

3.4 Agulhas Current transport

Transport at the four Agulhas transects is considered in conjunction with mass
convergence in closed boxes defined by the CTD/O survey lines. Transports are
reported here computed relative to (a) the deepest common level of each station pair,
and (b) 2400 dbar (or the deepest common level if it is < 2400 dbar).® Table 3.c
shows the Agulhas transport at the 1985 transects. Fig. 3.6 shows transport per unit
width and bottom topography. Fig. 3.7 shows the boxes used for mass convergence
calculations. Figs. 3.8 —3.10 show the transports along the box boundaries. These

may be compared to the simplified transport schematic shown in Fig. 2.12 above.

7 Gordon et al. reported the ratio of (a) transport between 1500 and 3000 dbar to (b)
transport above 1500 dbar, with both transports computed relative to a deep level, to
have a value of 0.15 - 0.25.

8The MIT inverse model programs (discussed in Appendix A) and the WHOI transport
programs are set up such that the reference level must be chosen from a set of discrete
levels. The two sets of levels are slightly different, so 2400 dbar was used at WHOI
and 2500 dbar at MIT. The differences in net transport using these two levels are
negligible (order 1 Sv).
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Agulhas Current: (a) transport per unit cross-stream
distance, 1985 transects A-D, looking downstream.
Transport is computed relative to 2400 dbar or the
deepest common level of station pairs, whichever is
deeper. (b) depth of bottom beneath current. For both
plots, origin of cross-stream distance is at transects’

15 C/200 m location.
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relative to deepest common level: +31

Fig. 3.8 Mass imbalance schematic, Area 1: transports above
2400 dbar reference level (transports above bottom
reference level in parentheses; values omitted if same as
transport above 2400 dbar.)
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Transect A. Transport at transect A relative to the deepest common level is
105 Sv. The transport per unit width function (Fig. 3.6) exhibits several
characreristics in agreement with previous theoretical and observational idealizations of

Agulhas structure:

- three indicators of the Current's main axis — the transport per unit width
maximum, the 15 C/200 m contour location (origin of cross-stream distance
on the Figure; see also Chapter 2), and the 2000 m isobath — line up
(within 15 km) vertically;

« the cyclonic (cold, right-hand) side is much narrower than the anticyclonic
side; and

+ transport increases and decreases smoothly across the current.

It is apparent that the transect completely crosses the Current, but that station spacing
does not fully resolve the transport per unit width maximum, which may thus be
somewhat underestimated.

Transect B and Areg [. Transport at transect B relative to the deepest common
level is 34 Sv, only 30% of the value given by linear interpolation of alongstream
adjacent historical and 1985 transport values. Transports at all other 1985 transects are
70 — 110% of the historical values. There is no deep flow beneath 2500 m at
transect B, unlike all other deep Agulhas transects west of 28°E, both historical and in
the 1985 survey. The current transport at transect B has been displaced up-slope
entirely inshore of the 2500 m isobath (Fig. 3.6).

A mass imbalance of only +31 Sv is observed for Area 1 (Fig. 3.7), despite
the 71 Sv mismatch between transects A and B for a deepest common reference level.
Inflow at transect A contributes +105 Sv. Outflow south of transect A removes —33 Sv

in a broad northward extension of the Return Current, between stations 270—267.




Inflow at station pair 267-266 adds +10 Sv. Net outflow across the cold core ring
removes —18 Sv (stations 260, 262-2669, discussed in Ch. 7). Finally, outflow at
transect B removes —34 Sv (Fig. 3.8). Imbalances are +22 and +5 Sv above and
below a 2400 dbar reference level.

The missed transport inshore of transect A is small and uncertain in sign.
transect A ends in 600 m of water on its inshore side. Isopycnal tilts reverse below
200 m between the last two stations (277 — 278), producing a small (0.5 Sv) outflow
there. A missed transport of only 2 Sv is implied by assuming an average velocity of
+10 cm s71, 20 km between the 600 and 200 m isobaths, and 100 km between the
200 m isobath and the coast.

The true reference and deepest common level (dcl) velocities are, of course,
unknown. Nevertheless, we can still ask if a plausible dcl velocity field can effect mass
balance in Area 1. It seems reasonable to expect enhanced dcl velocities at transect B
where the Current is displaced onshore and transport is reduced compared to the other
transects. Transport at transect B increases 1.5 Sv per 1 cm 5! dcl velocity, assuming
for the moment that dcl velocity is constant across the transect, where, recall, the
maximum bottom depth is 2380 m at station 260. Rather large dcl velocities of
15 cm s-! uniformly across the current would bring the Area 1 mass transport above a
2400 dbar reference level into balance. Alternatively, dcl velocities of, say, 70 cm s-1
where the dcl is 200 — 400 m (station pairs 256 — 258), and of 7 cm s-! where the
dcl is 400 - 2400 m (r?maining station pairs 258 — 260), also bring the transport
above the 2400 dbar reference level into balance. Such velocity magnitudes seem
plausible in light of recent direct measurements in the Retroflection region (Luyten,

pers. comm.) that gave velocity means and standard deviations of up to 8 + 15 cm s~1

9Station 261 is not used for transport calculation because it stops 2000 m above the
bottom. :
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at 1500 dbar and 5+ 10 cm s-! at 4000 dbar, for 2 year records. Mass transport
below 2400 dbar can be balanced with smaller adjustments at transect B and at other
station pairs in the box. Transport errors and layer-by-layer imbalances are discussed
with the inverse model below.

The adjusted Agulhas Current transport at transect B to balance Area 1, then, is
about 56 Sv. This translates into a downsiream decrease in transport of ~16 Sv per
100 km between transects A and B. The revised value at B is 50% of the interpolated
historical and 1985 transports. Just 60% of the transport at transect A continues on in
the Agulhas proper to B. The rest exits Area | in two branches; one branch retroflects
back eastward south of transect A, and the other branch flows southward on the eastern
side of the cold core ring. These two flow paths short-circuit the main retroflection
farther downstream. Such a partial retroflection was also noted by Harris and
van Foreest (1978).

The observed decrease in transport at transect B occurs in close proximity to the
strong cold—core ring observed in the southemn approach to the Agulhas Passage, just
offshore of the Current at transect B (visible in e.g. Fig. 1.7). Eastward flow in the
northern side of the ring may be entraining water from the westward-flowing Agulhas.
The ring is discussed further in Chapter 7.

Transect C. Transect C, plus either station 249 or 248, gives a transport of
83 — 85 Sv relative to the deepest common level. A plot of transport per unit width at
the transect (Fig. 3.6) shows that the current core was fully crossed, but that the
transect does not extend all the way to the edges of the current. The transect extends
onshore only as far as the 1600 m isobath (station 298).

The missed transport on the inshore and offshore sides can be estimated from

the transport per unit width figure (Fig. 3.6). At each edge of the transect, the transport




per unit width function can be extrapolated to zero graphically with a tine of slope s over
a distance of d kilometers. The estimate of missed transport, M, is given by

d

2

M = J%dx:szi (3.1)
¢

On the inshore side of transect C, s = 7.0 - 1073 Sv km~2, and d = 50 km, so
M = 9Sv. This agrees fairly well with the 6 Sv tiaasport between
stations 239 - 242 and 298 on the inshore side of C.

On the offshore side, s = 1.5 - 1072 Sv km~-2, and d = 20 km, so
M = 3 Sv. The transport at C becomes 95 — 97 Sv with these adjustments.

The transport relative to the deepest common level at transect C with (without)
adjustment is 80% (70%) of the linear interpolation of the along-stream adjacent
historical values. The downstream adjusted (unadjusted) transport increase between
transects B and C is 27 Sv (33 Sv) per 100 km.

Area 2. A mass imbalance of -44 Sv relative to deepest common reference
levels (-30 Sv above and 0 Sv below 2400 dbar) is observed for Area 2, the closed
area that includes transects B and C (Fig. 3.7 and 3.9). Recall that Area 1 had an
imbalance of +31 Sv (+22 Sv and -8 Sv below 2400 dbar), and that a plausible
adjustment in transport at transect B was shown to bring mass above 2400 dbar into
balance in Area 1. This same adjustment also reduces the imbalance in Area 2 above
2400 dbar to -8 Sv. The transport at transect B was adjusted for the smaller of the
Area | and Area 2 imbalances, since this gives a more conservative estimate of the
adjustment and of the transect B transport.

The unadjusted flow at the perimeter of Area 2 is shown in Fig. 3.9: relative to

deepest common levels, the Agulhas at transect B contributes 34 Sv. Eastward flow in
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the northwest side of the cold core ring, which is just grazed by the survey, removes
5 Sv. Westward inflow south of the ring contributes 20 Sv, composed of 5 Sv that
balances the cold-core ring outflow and 15 Sv of Return Current transport that enters
Area 4 from the west and exits into Area 2 (Fig. 3.11 and Sec. 3.5). Weak westward
flow removes 6 Sv north of transect C proper (i.e., north of station 298) on the western
side of Area2. The Agulhas at transect C and station 249 removes 85 Sv. The
Agulhas Return Current meandering north along the southern side of the box brings
29 Sv into the box between stations 249 and 251, and then removes 31 Sv between
stations 251 and 253.

Transect D. Transport at transect D is 119 Sv relative to the deepest common
levels. Transport per unit width (Fig. 3.6) shows that transect D extends over the
northern edge of the current and across the current core but stops short of the current's
southern edge: counterflow is observed north of the current at station pair 242-243
(—80 km on Fig. 3.6), but at the southernmost station pair (246-247), isopycnals still
descend to the south (Atl. 3.28). Perhaps not too much transport was missed. At
station 247, the 10 C isotherm reaches its maximum depth of the entire survey; and this
station happens to fall near the center of the Retroflection loop defined by XBT
15 C/200 m contour (Fig. 1.3). Extrapolating using Fig. 3.6 as before gives
parameters for Eq. 3.1 of s = 3.0+ 1073 Sv km-2 and d = 100 km at the offshore
side of transect D, so M = 15 Sv there.

Transport relative to the deepest common level at transect D with (without)
adjustment is 96% (87%) of Jacobs and Georgi's transport at their section taken nearby.
The downstream transport increase between transects C and D is 39 Sv per 100 km (23
or 50 Sv per 100 km using an adjusted value at C or D only).

Cuwrent transport at transect D lies entirely in deep (>3000 m) water, unlike

transport at transects A—C, so the largest difference is observed at D between transport
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computed to the deepest common level and transport computed to a 2400 dbar reference
level. Transport above a 2400 dbar reference level is 99 Sv (111 Sv with adjustment
for transport missed at the offshore edge); transport below the reference level is -7 Sv.
Transport above 2400 dbar increases 22 Sv per 100 km (10 or 33 Sv using an
adjusted value at C or D only) .

Area 3. A mass imbalance of -8 Sv relative to deepest common reference levels
(-2 above and 0 Sv below 2400 dbar) is observed for the closed area that includes
transects B and C (Area 3 in Fig. 3.7).

The flow at the perimeter of Area 3 is shown in Fig. 3.10. The Agulhas
contributes 85 Sv, relative to a deepest common level and summed over transect C, C's
southern end and station 248, and C's northern end and station 242. Northward flow
along the southem end of the box (stations 247 - 248) adds 19 Sv . The Agulhas at
transect D removes 119 Sv. Eastward counterflow north of D adds 6 Sv (stations 242
and 243) .

Summgry. Evidence from water mass extrema, topographic constraints, and
topographic steering suggest a reference level near 2500 dbar in the Retroflection
region. Transports computed relative to this and other levels at the Agulhas transects are
reported in Table 3.c, with relatively small adjustments as suggested by the transport
per unit width function shown in Fig. 3.6.

Nearly matched transport surplus and deficit in the closed areas separated by
transect B were used to infer an upward adjustment to the extremely low transport at
this transect. Such an adjustment requires bottom velocities that fall within ranges
derived from current meter measurements in this area. The imbalances in the three areas
remaining after these adjustments are very small compared to the fluxes due to the

Agulhas Current and the cold-core ring.
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3.5 Agulhas Return Current transport

Transport at historical transects across the Agulhas Return Current (Table 3.d)
and at the two 1985 Agulhas Return Current transects (transects E and F in Table 3.e
and Fig. 11) is considered in conjunction with mass convergence in the fourth closed
box of the CTD/O; survey (Fig. 3.07 and 3.12). A Return Current transect from
Gordon et. al's 1983 Retroflection survey is included here for comparison (also shown
in Fig. 11). Their transect is composed of three stations in the Return Current and six
adjacent stations, all taken to the bottom (stations 50—58 in Figs. 3.13 and 3.14, which
are a reproductions of Gordon et al.’s Figs. . and 2).

The Return Current crossed directly over the heart of the Agulhas Plateau during
the 1985 survey, so transports relative to 2400 dbar and to deepest common levels are
nearly equal. The 2500 — 3600 dbar depths beneath Transects E and F can be seen in
Fig. 3.11. The Current followed a very different path, deflecting northwest around the
Plateau following its flank, during bo*h previous surveys that crossed the Retumn
Current near the Plateau, (Harris and van Foreest, 1978, and Gordon et al., 1987). The
15 C temperature /200 m depth contour in both of the 1985 transects lies above the
2700 dbar isobath, while in the 1983 transect it lies above the 4200 m isobath. The
depth difference corresponds to an approximately 300 km horizontal displacement of
the Return Current up onto the Agulhas Plateau; the flank of the Plateau has fairiy
constant slope.

Return Current transport is not as unambiguously defined as Agulhas Current
transport. There is no geostrophic shear reversal and no coastline to define the southem
limit of the Retum Current transport, since the eastward flow of the Circumpolar Ocean

lies at the southern side of the eastward-flowing Return Current. Return Current
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Table 3.d - Historical Agulhas Return Current transports

Transports (Sv) above reference level (dbar)
Source  location  1000db (500db 2400 db Bottom

Gordonet al., 1986  separated south- 64
ward flow, 21°E

Jacobs and Georgi, south of Agulhas 1202

1977 Bank, 21°E

Harris and 20 - 28°E, north 3sb

van Foreest, 1978 flank Plateau

Gordon et al., 1986 24" E, north 54 78¢ 98¢
flank Plateau

3Estimated from their Fig. 15a.

bEstimated from their Fig. 3; transports are computed relative to 1100 dbar (or the
'27.2 olevel'?), not 1000 dbar.

My calculation using Gordon's data.
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Table 3.e ~ Agulhas Return Current transports, Luyten & Toole
survey, Feb. - Mar. 1985, R.Y. Thomas Washington, Cruise

3
Transports above/below (Sv) reference level (dbar)
. . 4
E 284-288 22 21 34 -6 48 0 50
EA 283-283 54 0 56
extended?
F 283-279 30 -35 50 -10 73 0 75
FA F extended? 75 77
FA' FA + 267-271b 94 0 96

aExtended to 110 km (southern boundary of Gordon et al. 1983 transect) south
of the 15 C/200 m location, using transport per unit width value at last station
pair. See text.

bAdditional stations cross net eastward flow between Transect F and Transect A.
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1985 Transects E-F
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Fig. 3.11 — Agulhas Return Current: (a) transport per unit cross-stream distance, 1985
transects E-F, looking downstream. Transport is computed relative to 2400 dbar or the
deepest common level of station pairs, whichever is decper. '(b) depth beneath Current.
For both plots, origin of cross-stream distance is at transects' 15 C/200 m location.
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Fig. 3.12 — Mass imbalance schematic, Area 4. transports above 2400 dbar reference
level (transports above bottom reference level in parentheses; values omitted if same as
transport above 2400 dbar.) Two transport numbers relative to 2400 dbar are shown

for split station pairs (see text).
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transport continues to accumulate slowly as stations are added to the south — unless
and until a transport reversal associated with an anticyclonic feature is encountered.
Transport per unit width at the 1985 transects E and F and at the 1983 transect
reaches a maximum value between 10 and 30 km on the warm, northem, side of the
15 temperature/200 m depth contour (Fig. 3.11). The sharp reversal from positive to
negative transport 50 km north of the 15 C/200 m contour signals the northern limit
of Return Current transport. The warm, anticyclonic, northem side of the Agulhas
Return Current is narrower than the cold side, the reverse of the situation in the Agulhas
Current.
1983 Return Current trgnsect. Transport at the 1983 Return Current transect is
78 Sv (98 Sv) relative to 2400 dbar (deepest common level). The transect grazed the
Retroflection loop south of the Return Current: note the nearly-matched positive and
negative transport lobes between —100 and ~400 km in Fig. 3.11. These correspond to
the dynamic height reversal seen in Gordon et al.'s map, reproduced here as Fig. 3.14.
Return Current transport at the 1983 transect extends to =110 km. The two
1985 transects end at —61 and —92 km, before encountering westward counterflow.
The 1985 transports will be extrapolated to —110 km to facilitate comparison with the
1983 transport value. Transport per unit width is about 0.25 Sv per km at the
southem side of all three transects, so defining the southem limit of the Return Current
differently changes the transport by e.g. 13 Sv for a 50 km southward shift.
Transect E. Transport at Transect E (stations 284—288) is 48 Sv (50 Sv)
relative to 2400 dbar (deepest common levels). The last station south of the transect
falls at 61 km, south of the 15 C/200 m location. After using Eq. 3.1 between —61
and —110 km (the end of the 1983 transect), the transport becomes 54 Sv (56 Sv).
Transect F. Transport at Transect F (stations 283-279) is 73 Sv (75 Sv)

relative to 2400 dbar (deepest common levels). The last station of the transect falls
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92 km south of the 15 C/200 m location. Again, after using Eq. 3.1 between —92 and
~110 km, the transport becomes 75 Sv (77 Sv).

There is additional net eastward flow of 19 Sv (23 Sv) relative to 2400 dbar
(deepest common level) between Transect F and Transect A to the north, i.e. between
stations 267 and 271.

Area 4. A mass imbalance of +12 Sv relative to deepest common reference
levels (—1 Sv above and +1 Sv below 2400 dbar) is observed for the closed area that
includes Transects E and F (Area 4 in Fig. 3.7).

The flow at the perimeter of Area 4 is shown in Fig. 3.11. The cold-core ring
cuts across the middle of Area 3, isolating two subregions of Return Current transport
from each other. The area was divided up into three distinct subregions, labelled a, b,
and ¢, in order to clarify the situation. A recirculation of Return Current transport
entering from the west and exiting to the east into Area 2 occupies subregion a. The
cold-core ring occupies subregion b. The Return Current proper transits subregion c.
Transports at three station pairs have each been split between two subregions so that
each subregion's transport nearly balances — the details of the splitting are not, of
course, unique. The stations are too far apart to resolve the circulation.

The adjacent stations 253 and 290 on the westem edge of Area 4, at the
boundary of subregions a and b, were taken 13 days apart, the longest elapsed time for
adjacent stations in the entire survey. Propagation of the cold-core ring during the time
elapsed between the two stations evidently caused a drop in the dynamic height (increase
in mean density) at the location of the southemn station of the pair (station 290), judging
from the large transport per unit width (1.10 Sv km™1 relative to 2400 dbar; the
maximum for the entire survey is 1.17 Sv km™! at Transect A). Non-synoptic data is
sometimes blamed for anomalously large mass imbalances in closed boxes (Wunsch,

1978). The non-synopticity of the data in this case has not noticeably increased the
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mass imbalance of Area 4, which is comparable to the mass imbalances in the other
areas.

Agulhas vs. Agulhas Return Current transports. Keeping in mind that the
southern boundary of the Return Current is not sharply defined, we can ask how the
Return Current transports compare with the corresponding Agulhas Current transports.
The fully adjusted values relative to 2400 dbar are summarized in Table 3.f.

This is exactly the same as asking if transport relative to 2400 dbar, plus
transport due to the bottom velocity adjustment at Transect B, vanishes when integrated
between the coast of southern Africa and 100 km south of the 15 C/200 m contour in
the Return Current.

The agreement is quite good at all the transects. This suggests that 100 km
south of the 15 C/200 m contour in the Return Current is (fortuitously?) not a bad
choice for its southem boundary, assuming that the Agulhas and Agulhas Retum
Currents must roughly balance — except for 5 to 15 Sv that may leak into the S.
Atlantic and ultimately return to the S. Indian via straits in the Indonesian archipelago
(suggested by Gordon, 1985, 1986 ).

This comparison is, in effect, an independent check on the bottom velocity
adjustment at Transect B: the Agulhas Current/Return Current transect pair involving
Transect B looks about as well matched as the other two pairs, which suggests that the
transport adjustment at Transect B is appropriate.

Summgry. The Retum Current as it appears in the 1983 and 1985 transects has
a transport of 54 to 94 Sv (56 to 98 Sv) relative to 2400 dbar (deepest common
levels), having integrated the Return Current eastward transport south to 110 km south
of the 15 C temperature/200 m depth location. A small extrapolation was necessary on
both 1985 transects. The Return Current transports defined in this way correlate well

with the transport at corresponding Agulhas Current transects. Since the adjusted
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Table 3.f - Agulhas and Agulhas Return Current transports at
corresponding transects

Agulhas Current  Agulhas Return Current  Agulhas  Return Current

transect trapsect _ transport (Sv)3 transport (Sv)2_
1983 1983 83 78
A F 91 94
B E 56 54

aFully adjusted transport values relative to 2400 dbar are shown.
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Agulhas Current transport at Transect B falls in line with the other values, this increases
confidence in the adjustment procedure.

Mass transport imbalances in the closed area (Area 4) crossed by the Retum
Current are only ~1 Sv above and —1 Sv below 2400 dbar, despite non-synoptic data
(13 days between two adjacent stations) and the presence of a strong cold-core ring that

was evidently propagating across the edge of the box.

3.6 Conclusions

The overall 1985 Retroflection transport pattern is shown at the end of the
previous chapter (Fig. 2.12).

The Agulhas transport is significantly larger and more variable alongstream than
the returmning wind- and thermohaline-forced interior flow. The Agulhas transport is
between about 55 and 135 Sv at the 1985 transects' latitude range, while the returning
interior flow accounts for no more than 55 + 8 Sv. Apparently as little as 0.4 of the
Agulhas transport is directly forced.

The alongstream variation in Agulhas transport, upstream of the current's
separation from the African continental slope, has values from about -20 to +30 Sv per
100 km. Returning interior transport computed from wind stress curl and an estimate
of thermohaline circulation, varies alongstream by only +2 to +3 Sv per 100 km at
Retroflection latitudes (31 - 37°S). The maximum alongstream increase is +9 Sv at
25°S much further north.

Both observed transport and observed alongstream transport variation increase
with reference level. Transport and transport variation can be reduced to levels expected
from the wind- and thermohaline forcing by moving the reference level upward to

<1500 dbar. However, this reference level is above the deep oxygen minimum of
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South Indian origin and would result in this water mass flowing towards its source in
the South Indian Ocean.

Agulhas transport decreases dramatically between transects A and B, from
90 Sv at transect A to about 55 Sv at transect B. This decrease is associated with a
35 Sv partial retroflection, located just upstream of a large cold ring found on the
northwestern flank of the Agulhas Plateau. The Agulhas at transect B is found entirely
inshore of the 2400 m isobath.

The 56 Sv transport value at transect B includes 34 Sv from geostrophic shear,
plus 22 Sv corresponding to 70 cm s-1 bottom velocities at depths of 200 - 400 m,
and 7 cm sl at depths of 400 - 2400 m. Deep bottom velocities of the latter
magnitude are comparable to directly measured velocities at similar depths in the
Retroflection.

The Agulhas Current transport consistently matches Return Current transport
immediately to the south, to within +5 Sv for three pairs of Agulhas/Return Current
transects, when transport is integrated from the African coast to 110 km south of the
15 C temperature/200 m depth contour in the Return Current. Two of the transect
pairs (transects A/F and B/E) were taken from the 1985 survey, and the third from the
1963 survey. The B/E pair balances about as well as the other two pairs. This provides
independent confirmation that the bottom-velocity/transport adjustment at transect B is

reasonable.




Chapter 4. Tracer fields in the Agulhas and Agulhas Return Currents

4.1 Introduction

Synoptic tracer gradients in a streamwise coordinate frame in the Agulhas and
Agulhas Return Currents are discussed in this chapter. Four 1985 transects across the
Agulhas and two 198S5 transects across the Return Current are used for this purpose (the
transect and station locations are shown in Fig. 3.1). The 1983 Agulhas transect
(Gordon et al., 1987) is also included. The tracers discussed here are potential
temperature, salt, oxygen, and planetary potential vorticity.

The 1985 transects provide the first high vertical and horizontal resolution
synoptic snapshot of cross-stream and along-stream tracer gradients in the Agulhas and
Agulhas Return Currents. Previous presentations of Retroflection region tracer data
were restricted to consideration of regional-scale or coarse features of the tracer field, as
seen in (i) a single deep Agulhas/Retum Current transect (Jacobs and Georgi, 1977,
and Gordon et al., 1987), (ii) several transects of coarsely spaced Nansen casts to
intermediate depth (Harris and van Foreest, 1978), and (iii) an ensemble of non-
synoptic hydrographic stations (Wyrtki, 1971).

Tracer variation over small along-stream scales in the Retroflection has important
implications. Fluxes of heat, salt, and potential vorticity across the Retroflection can be
incorrectly estimated or interpreted, if tracer characteristics at a transect across the
current are dominated by local processes but are treated as if they represented
characteristics over some large distance along-stream. These fluxes can play an
significant role in gyre and global scale dynamic and thermodynamic balances
(Gordon, 1985, 1986).

The biggest surprise in the new set of transects is, in fact, how rapidly the

current can change in the along-stream direction. The simple thin jet/boundary layer
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scaling 6L << L, where OL is the cross-stream scale and L the downstream scale,
might lead one to expect that tracers and transport would vary more slowly in the along-
stream than in the cross-stream direction.

But the thin jet/boundary layer scaling breaks down in the Retrofleciion, as can
be seen in the 1985 synoptic transport (the overall transport pattern is shown in
Fig. 2.12). Transport, as discussed in the previous chapter, can increase by over one-
half its value (from 55 Sv to 90 Sv between 1985 transects B and C), within about
two and a half current widths (current width ~100 km). Evidently, each transect
accurately characterizes the current over an along-stream distance that is not much larger
than the current width — and, it must be added, for only a limited time, judging from
the time-dependence of surface temperature in satellite infrared images (Lutjeharms and
van Ballegooyen, 1988), sea surface height in satellite altimeter measurements
(Cheney et al., 1983}, and velocity directly measured with current meters
(Luyten, pers. comm.).

Along-stream tracer field variations at and above intermediate levelsv
(< 2000 dbar) are well-correlated with the along-stream transport changes due to the
partial retroflection and the intense, partially isolated recirculation of the Retroflection
itself. Many features of the intermediate to upper level tracer fields are, in fact, hardly
understandable without reference to the transport field.!

The new data provides fresh insights into circulation ideas developed in previous

investigations of this part of the ocean. As we shall see, the Subantarctic Mode Water

(SAMW) potential vorticity minimum varies in core density across the current consistent

with McCartney's (1982) ideas about SAMW formation and circulation.

1Using the transport field to understand aspects of the tracer field is to be distinguished
from classical core layer analysis, in which the fracer extrema patterns are used to
choose the reference level for the large-scale geostrophic transport; a deep (~2400 dbar)
Retroflection reference level was inferred in the previous chapter in this way. :
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S. Atlantic/Circumpolar thermocline water swept into the Retroflection in 1985 as it

was in 1983 (Gordon et al., 1987), can be closely linked, as was alluded to above, to
the high-resolution 1985 synoptic transport field. The high-salinity influence found at
intermediate depths of the Red Sea Water (RSW), defined by a salinity maximum in the
Indian Ocean, can be traced even further downstream in the Agulhas than in previous
observations (Wyrtki, 1971, Gordon et al. and Griindlingh, 1985), beyond its
separation from the coast. The supply route to the Retroflection of the highest salinities

in the North Atlantic Deep Water (NADW) deep maximum, considered by Wyrrki

(1971}, Jacobs and Georgi (1977), and Reid (pers. comm.), is found to be tightly
pressed up against the African continental slope.

The new high horizontal resolution transects show a sharp water mass boundary
on isopycnal surfaces in the Agulhas near-surface (<300 m) layer near the current core.
Tropical Thermocline Water is found on the cyclonic, inshore side of Agulhas, with low
oxygen, and salinity and stratification decreasing monotonically with depth.

‘Characteristics changing rather sharply across the core to those of Subtropical Surface
Water, defined by a slight subsurface salinity maximum, and Subtropical Mode Water,
defined by a potential vorticity minimum and associated oxygen maximum. This tracer
boundary, and a similar but less sharp boundary at intermediate levels marking the
offshore extent of Red Sea Water influence, is used to generate a simple estimate of
steady east-west upper (<2000 m)level heat flux across the Retroflection, by balancing

the TTW flow with return flow on the south side of the Return Current.

4.2 Overview of tracer extrema
Tracer extrema, like the NADW deep salinity maximum and others already

mentioned, are of particular interest. Each can, in principle, be traced back through the
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gyre and global circulation to its source region, usually an area of enhanced air-sea
interaction at the sea surface or in a marginal sea.

A water mass name is customarily given to the layer around a tracer extremum,
e.g. the name 'North Atlantic Deep Water' (NADW) to the layer around the deep
salinity maximum. A few water masses label other tracer configuration types: 'Central
Water' is the name given to the parts of the various subtropical gyres' regional potential
temperature/salinity curves that are nearly single-valued and, as was noticed long after
the original naming, have constant density ratio (Schmitt, 1981).

Each Retroflection region tracer extremum discussed here has been used
previously in Indian Ocean/Retroflection circulation studies (salt and oxygen extrema,
Wyrtki, 1971, and Warren, 1981, South Indian Subantarctic Mode Water, McCartney,
1982, Benguela oxygen minimum, Chapman and Shannon, 1985; local Subtropical
Mode Water plus all other previously used extrema, Gordon et al., 1987). The tracer
vertical extrema are, from top to bottom:

+ Shallow (50 — 300 dbar):

Salinity maximum core of the S. Indian Subtropical Surface Water (SSW).

Potential vorticity minimum core of the local Subtropical Mode Water
(STMW).

Oxygen maximum associated with the STMW.

Oxygen minimum associated with the S. Indian Tropical Thermocline Water
(TTW).

Oxygen minimum associated with Benguela shelf bottom water (observed
only on the 1985 Cape Town Eddy transect; see Ch. 8).

+  Thermocline (200 — 800 dbar):
Potential vorticity minimum core of the S. Indian Subantarctic Mode Water
(SAMW).
Oxygen maximum associated with the SAMW.
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» Intermediate (600 — 1800 dbar):
Salinity minimum core of the Antarctic Intermediate Water (AAIW).
‘Deep’ oxygen minimum emanating from the northem Indian Ocean.

+  Deep (2000 dbar — bottom):
Oxygen minimum core of the Upper Circumpolar Deep Water (UCDW).
Salinity maximum core of the North Atlantic Deep Water (NADW).
Oxygen maximum associated with the NADW.
Oxygen minimum core of the Lower Circumpolar Deep Water (LCDW).

The Agulhas warm core, the only purely horizontal extremum in the region,
should perhaps be mentioned with this list. It is discussed in Ch. 2.

The Central Water found in the Retroflection is the South Indian Central Water
(SICW) which occupies the entire South Indian main thermocline and includes the
SAMW.

The oxygen minima of the Upper and Lower CDW are just barely observable in
the Retroflection and is mentioned here only for completeness. Fresher, higher-oxygen
Antarctic Bottom water lies between the Lower Circumpolar Deep Water and the
bottom.

Water-mass names for all the extrema are shown on contoured sections across
the Agulhas in Fig. 4.1 - 4.3. Water-mass names for the salt and oxygen cores are

shown on potential temperature/salinity and potential temperature/oxygen diagrams in

Figs. 7.7 and 7.8 in the cold ring chapter, Ch. 7.

Mode Waters are the products of wintertime deep convection at the sea surface,
thus their anomalously thick isopycnals (weak stratification) and the oxygen maxima
associated with them. Oxygen minima are associated with enhanced biological oxygen
utilization and/or relatively poorly ventilated layers. Salinity minima emanate from

zones of excess precipitation over evaporation at the sea surface (e.g. the Antarctic
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Fig. 4.1 — Salinity sections across the Agulhas showing names of salinity extremum
layers: Subtropical Surface Water (SSW) maximum, Antarctic Intermediate Water
(AAIW) minimum, and North Atlantic Deep Water (NADW) maximum.
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Fig. 4.2 - Oxygen sections across the Agulhas showing names of oxygen extremum
layers: Tropical Thermocline Water (TTW) minimum, oxygen maximum associated
with the Subtropical Mode Water (STMW), oxygen maximum associated with the
Subantarctic Mode Water (SAMW), deep oxygen minimum of northemn Indian Ocean
origin. Upper and Lower Circumpolar Deep Water minima are very faint or absent in
the Retroflection.
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minimum, Subantarctic Mode Water (SAMW) minimum.
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Intermediate Water formation zone in the Subantarctic, McCartney, 1977), and,
conversely, salinity maxima from zones of excess evaporation over precipitation, often
marginal seas (e.g. the North Atlantic Deep Water formation zone in the
Norwegian/Greenland Seas) or gyre interiors (e.g. the Subtropical Surface Water
formation zone at the surface of the South Indian subtropical gyre). Extrema exist only
relative to adjacent layers with less extreme characteristics, of course, and thus can be
obscured if the characteristics of adjacent layers change.

Scatter plots of tracer values at extrema as a function of potential density
(Fig. 4.4), extrema lists (Table 4.a), and contoured tracer sections (Atlas, after the last
thesis chapter)? are used in the discussions to follow. These presentations are used
rather than contoured tracer maps because (i) extrema are not found on surfaces of any
constant quantity (pressure, potential density, efc.), and (ii) the horizontal correlation of
the extrema values is often on the order of the station spacing, in part because they are
gradient quantities susceptible to features of arbitrarily small vertical and, by
implication, horizontal, scales. Vertical smoothing produces reasonable-looking
contoured maps, but choosing the smoothing scale is problematic since extrema
thickness vary considerably with depth and from station to station. Traditional
interpretations of extrema, seen through the filter of Nansen cast vertical resolution
(~100 m in the thermocline, more in the deep ocean), saw these extrema as rather broad
features steadily spreading away from their formation zones. The analysis used here
acknowledges that small blobs of anomalous water are a common feature of the ocean,

and presumes that the most anomalous have advected most rapidly away from their

2Since the contoured sections and the extrema tabulation were prepared using slightly
different subsampling and smoothing schemes, weak extrema may appear in one
presentation and not the other, This occurs most often in the oxygen field, because of
its relatively weak, noisy signal in this region, and in the potential vorticity field,
because it is a gradient quantity sensitive to filtering details. The UCDW and LCDW
oxygen minima are not tabulated.
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source region. This analysis represents only a best guess as to how oceanic tracer
dispersion, (a subject of active research) really works, especially in highly energetic
regions.

Table 4.a also lists mean values and standard deviations for each extremum and
for the extremum's pressure, potential density, efc., in addition to the the individual
extremum observations. These values were extracted from the CTD/O; data using
standard criteria, followed in ambiguous cases by subjective editing.

Tracer fields in the cold ring and the 1985 Cape Town Eddy are discussed in
Chs. 7 and 8 respectively.
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Fig. 4.4 — Scatter plots of salinity and potential density at tracer extrema. See caption
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Fig. 4.4, continued - Scatter plots of salinity and potential density at the major tracer
extrema observed in the Retroflection (see Table 4.a for list of values, station numbers,
etc.) The plotting symbol for each extremum observation is the letter of the Agulhas or
Agulhas Retumn Current transect from which it comes. Refer to Table 4.a to identify
station numbers of points with anomalous properties.

The left-hand column of plots on the previous page shows the upper layer
extrema. The right-hand column shows the extrema associated with the Subantarctic
Mode Water (SAMW).

The left-hand column on the this page shows the intermediate layer Antarctic
Intermediate Water (AAIW) salinity minimum and the 'deep’ oxygen minimum (labelled
here RSW’ for Red Sea Water). The right-hand column shows the North Atlantic Deep
Water (NADW) salinity maximum. The Upper and Lower Circumpolar deep water
oxygen minima are very faint or absent in the Retroflection, so they are omitted here.
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4.3 Tracer extrema and anomalies in the upper ~300 dbar

Basic structure. The upper layer at all the 1983 and 1985 Agulhas Current
transects displays a sharp transition in characteristics near the core of the Current.
Inshore, the nearly-isohaline, highly stratified Tropical Thermocline Water and its
intense subsurface oxygen minimum are found. Offshore, in the Retroflection interior,
the Subtropical Mode Water potential vorticity minimum and faint subsurface oxygen
maximum, and the Subtropical Surface Water subsurface salinity maximum are found.

The transition from inshore to Retroflection interior water mass characteristics,
is located within 20 km of the 15 C temperature/200 m depth contour on transects A,
C,and D. At transect B, water-mass transitions at the various extrema and the velocity
maximum are shifted 40 - 120 km offshore relative to their positions at other transects,
spreading out the band of inshore characteristics and confining the offshore
characteristics to a narrower band. This offshore shift occurs in conjunction with
considerable current transport reduction and onshore displacement, at transect B,
relative to all the other Agulhas Current transects (see Ch. 3).

The horizontal maximum of velocity is found near the water-mass boundary at
transects A, B, and D, while at transect C two velocity maxima straddle the water-mass
boundary. The near-surface velocity at transect C has two horizontal maxima due to
interaction of the shear associated with the surface warm core and an underlying layer of

rather uneven shear.3

30n transect C, surface velocity maxima of 1.12ms-! is found between the
northernmost pair of stations, 298-7, and another of 0.87 m s-! between stations 295-

3, separated by a velocity of 0.61 m s°! at the intervening station pair, 297-5 (stations
294 and 296 stopped at mid-depths and so were omitted from velocity calculations).
Note that these occur at lighter densities than are shown on the velocity vs. potential
density sections.
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The upper layer in the two 1985 Retumn Current transects also displays a sharp
transition near the current core (i.e., near the 15 C temperature/200 m depth contour
location and the horizontal maximum of velocity, which coincide at the two Retumn
Current transects). Retroflection interior water-mass characteristics are found on the
northemn side of the Return Current and fresher, more highly oxygenated, less well
stratified water on the southem, Circumpolar side of the Current.

An intrusion of fresh, highly oxygenated water from south of the Return Current
is seen in the Agulhas Current, in the upper layer at g, ~ 26.0 on transect C, stations
295 and 296, 10 km inshore from the velocity maximum, which is 40 km offshore
from the 15 C temperature/200 m depth contour. This intrusion presumably resulted
from entrainment of Return Current water from the south into the Agulhas Current.
This is consistent with the transport pattem, which shows such entrainment taking place
between transects B and C (transport pattern shown in Fig. 2.12).

Individual extrema. The Subtropical Surface Water salinity maximum, formed
in the center of the South Indian subtropical gyre (Wyrtki, 1971, pp. 274-276), appears
at all Agulhas and Agulhas Return Current transects at at least two stations. It has the
most uniform characteristics of all the extrema in the region, as can be seen in Fig. 4.4.
Most SSW observations are clustered around s = 35.60 psu, 8 = 17.7 C, and
O, = 25.80. This is virtually identical to the 1983 Retroflection observations. The
nearest section of Wyrtki's 35.6 psu contour is over 3000 km away near 55°E, 30°S,
but this can likely be ascribed to his 0.2 psu contour interval and the Nansen-bottle
data's limited vertical resolution, which could miss either the thin >35.6 psu extremum,
or the thin, fresher <35.6 psu cap over it.

The lateral boundary of the SSW salinity maximum appears as a near-vertical
isohaline on the 1985 and 1983 salinity/potential density sections. It falls within ten
kilometers of the 15 C temperature/200 m depth location at all 1985 Agulhas and
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Aguthas Return Current transects except transect B, where it is found 40 km farther
offshore. Perhaps at B mixing is enhanced in the current core, eroding away the SSW
salinity maximum; or perhaps the salinity maximum moves offshore as part of an
adjustment or instability process in the onshore meander. The SSW lateral boundary in
the 1983 Agulhas transect is found at the first station on the warm side of the 15 C
temperature/200 m depth contour, which falls 40 km offshore of the contour.

The most anomalous SSW points are observed at stations just inside the lateral
boundary: the warmest SSW observation occurs at station 276, transect A, and the
coldest observation at station 258 (Atlas, transect A and B, salinity on potential density
surfaces).

The Subtropical Mode Water potential vorticity minimum appears at all 1985
Agulhas and Agulhas Return Current transects, and at the 1983 Agulhas transect, at
slightly fewer stations than the SSW salinity maximum. The potential vorticity at the
minimum has values ranging from 100to 350 x 10-12m-I s-1 and is found at
5 =35.5820.04psu and 6=17.4120.7C. The potential vorticity minimum
values tend to increase onshore in the Agulhas, i.e. the anomalously thick Mode Water
wedge thins towards the African continental slope. The STMW potential vorticity
minimum is found 50 to 100 m beneath the SSW salinity maximum at stations where
both are present, which is usually the case. The potential vorticity minimum disappears
either a station or two offshore from, or at the same station as, the SSW salinity
maximum disappearance. The SAMW potential vorticity minimum is present at just one
station on transect B, station 261, located 120 km south of the 15
C temperature/200 m depth location.

The STMW oxygen maximum is found with values of about 4.8 - 5.2 ml I'!,
generally within 20 - 40 m of the STMW potential vorticity minimum. The STMW

oxygen maximum signal is noisy and at the threshold of the oxygen measurement
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accuracy (~0.25 ml I-1), so the Atlas contoured sections do not show it very well. For
example, the (questionable and only) oxygen maximum on Agulhas Current transect B,
station 261, appears on the oxygen/potential density section as a dot, actually a tiny
closed 5.0 ml I-! contour.

The shallow oxygen extrema pattemns are most complicated on the inshore side
of the Agulhas where low oxygen values associated with the Tropical Thermocline
Water are found. An example of this is the 4.0 ml I-! oxygen maximum (!) value listed
in Table 3.a for the inshore side of the Agulhas Current at transect C, station 297.
This maximum is locally 'produced’ between two lower-oxygen Tropical Thermocline
Water layers above and below; it is not associated with the STMW at all.

The Tropical Thermocline Water oxygen minima appears at stations at and just
inshore of the Agulhas Current in 1985 transects A - D and in the 1983 Agulhas
transect. The minimum reaches values of less than 3.8 ml I-! at a station or two on
each 1985 Agulhas transect, and less than 4.2 ml 1-1 at station 49 on the 1983 Agulhas
transect. It is confined inshore of 40 km on the warm side of the 15C
temperature/200 m contour, and does not appear at all on the Agulhas Return Current

transects.

4.4 Tracer extrema and anomalies at thermocline levels

Basic structure. The thermocline layer at all the 1985 Agulhas Current transects
is occupied by South Indian Central Water (SICW), plus intrusions of colder, fresher
water from south of the Retumn Current. The SAMW potential vorticity minimum lies at
10 to 12 C within the 6 to 16 C potential temperature range of the SICW; the potential

vorticity minimum is found on every station in the Agulhas and Agulhas Return Current

4The Tropical Thermocline Water oxygen minimum appears at the very top of the
transect B oxygen/potential density section, on the right-hand side. It does have a
higher oxygen cap, at densities lighter than those shown in the section.
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that reaches SAMW densities. The SAMW oxygen maximum is also found on every
station that reaches SAMW densities, except for several stations in the Return Current
where increased oxygen in the overlying layer obscures it.

Individual extrema. The Subantarctic Mode Water potential vorticity minimum
has values ranging from 24 to 110 10-12 m-! 51, with most observations found within
the ranges 34.8 <s< 352 psu, 10 <0< 12C, and 26.6 <0, <26.8. These
ranges agree almost perfectly with observations of SAMW at 18 and 32°S in the South
Indian Ocean (McCartney, 1982). The SAMW extends all the way across the Agulhas
Current to the continental slope, ~50 km further inshore than the STMW is found, and
all the way across the Return Current transects (Fig. 4.5; also Atlas contoured sections
of potential vorticity). The SAMW core density changes abruptly near the slope at
transects A and B, perhaps because the continental slope side/bottom boundary is a
source of frictional torques and enhanced mixing.

McCartney (1977, 1982) argued that the SAMW is injected northward into the
S. Indian from its Subantarctic surface formation zone, and that its core density
increases from west to east in the South Indian because the SAMW continues to cool
and convect while travelling eastward in the Circumpolar flow. Now, if the subtropical
gyre streamlines wrap around into the western boundary current in an orderly way, we
may expect to find the heaviest SAMW cores on the Retroflection side of the Agulhas
and Agulhas Retumn Currents. This expectation is faintly fulfilled by the SAMW core
potential density on transects B - D (see Table 4.a). Also, the g isopleth just above the
SAMW g minimum does tilt upward, relative to density surfaces, across the current into
the Retroflection on transects C - F. This can be seen in the Atlas sections of § vs.
potential density.

The SAMW oxygen maximum is found with values from 4.9 - 5.4 mil I-1,

generally within £100 m of the SAMW potential vorticity minimum. A couple of lower
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Fig. 4.5 - Map of Subantarctic Mode Water (SAMW) potential vorticity minimum
values, in 10-12m-1 s-1, at 1985 survey CTD station locations. No SAMW minimum
was observed at locations marked with an ‘M’ for monotonic. Note that monotonic
stations are mainly observed outside the Retroflection and Retroflection warm rings:
inshore of the Agulhas up on the continental slope, outside the warm features west of
the Retroflection, south of the Agulhas Return Current, and within the cold ring.
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values are observed on the inshore side of the Agulhas, at transects A and C, probably
the result of tropical thermocline influence. The oxygen minimum layer between the
STMW and SAMW oxygen maxima is always less than 4.8 ml I-! in the Agulhas
Current, so the two maxima are definitely distinct there. The upper layer and
thermocline in the Return Current have more uniformly high oxygen values due to
infusion of water from the south, which tends to mask the STMW and SAMW oxygen
maxima.

Fig. 4.4 shows that most oxygen maximum observations at transects C - F
are anomalously fresh compared to the SICW, indicating that downstream of transect B
high oxygen water was entrained into the Agulhas from the south side of the Return
Current. The anomalously salty oxygen maximum observation at transect A,
station 277, is on the inshore side of the Agulhas and indicates Red Sea Water high

salinity influence, discussed further in the next section.

4.5 Tracer extrema and anomalies at intermediate levels

Basic structure. The intermediate level salinity field provides striking tracer
evidence for entrainment of water into the Agulhas Current from the south side of the
Retum Current downstream of the partial retroflection, and for separation of the current
from the continental slope north of the slope’s southem tip.

Oxygen and salinity values are strongly anti-correlated in this layer, with high
salinities and low oxygens matching almost perfectly, even at interleaving vertical
scales.

Salty, low oxygen Red Sea Water is found at the most inshore stations on
transects A and B across the Agulhas Current. Further downstream, fresh, high oxygen
water is found at the most inshore stations on transects C and D across the Agulhas

Current, evidently from cold eastward inflow just north of the Agulhas at transect D.
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The saltiest water on transects C and D is seen just offshore of this thin fresh ribbon. A
confused mixture of fresh and salty water is seen at the rest of the transect C and D
stations, presumably a mixture of saltier water from the Agulhas at transect B, and
fresher Return Current water entrained from the across Retroflection between
transects B and C.

The Return Current AAIW is generally fresher than that in the Agulhas Current,
5 ~ 34.35 psu as compared to 34.50 psu.

Oxygen at the deep oxygen minimum increases downstream through the
Agulhas Current and Return Current, from 3.5 <03 < 3.9 ml I-! at transect A to
39<03<4.2mil! at transect F.

Individual extrema. Salinity in the Antarctic Intermediate Water salinity
minimum decreases relatively smoothly offshore in the Agulhas Current at transects A
and B, from s > 34.6 psu close inshore to s < 34.4 psu offshore, at 6 ~ 4.6 C and
o7 ~ 31.8. Temperature/salinity interleaving is superimposed on the overall decrease
in salinity proceeding offshore, with temperature/salinity at a station varying between
the temperature/salinity curves at neighboring stations.

The RSW-influenced high salinity ribbon close onshore has significantly higher
q than the fresher salinity minimum immediately offshore (>128 vs.
<90 x 10-12m-1 5-1), The RSW appears as a salinity maximum further north in the
Indian Ocean with values of 38.0 psu at the Red Sea, weakening southward to
~34.7 psu at the maximum's southernmost extent in the Mogambique Channel
(Wyrtki, 1971, Griindlingh, 1985).

The AAIW salinity minimum itself weakens northward in the South Indian
sector from values of 34.2 psu at ~50°S to 34.6 psu at the southern end of the

Mogambique Channel.
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The smooth decrease in intermediate level salinities proceeding offshore at
transects A and B gives over to intense, confused gradients at transects C and D. The
AAIW salinity minimum itself generally increases offshore at transects C and D, from
s = 34.27 to 34.43 psu at transect C and from s = 34.29 to 34.40 at transect D,
except for the saltiest observation at these transects. The saltiest water appears at two
stations on transect C, and one station on transect D, offshore from the freshest, most
inshore station. This rather strange arrangement can be reconciled, amazingly, with the
transport field. A thin counterflow, the southern limb of a tiny anticyclonic eddy
between stations 242 and 243 inshore of the Agulhas Current at transect D introduces
fresh water from the South Atlantic into the regime inshore of the Agulhas Current at
transects C and D - thus the freshest minimum values are observed at the most inshore

stations. The strongest remnant of the RSW would seem to account for the saltiest

minima a station or two offshore. The fresh, noisy, minimum observations further
offshore, relative to values at transects A and B, are evidently a mixture of AAIW from
the Agulhas Current at transect B and from the part of the Return Current entrained
between transects B and C (see Fig. 2.12). This is no doubt a simplified interpretation,
with very intense interleaving observed at all transect C and D stations.

The pattern just described at the minimum itself is consistent with pattems in the
2 - 3 C layer immediately above; the s = 34.5 psu contour undergoes striking
vertical excursions at both transect C and D on sections with salinity plotted as a
function of potential density.

The AAIW in the Return Current is fresher than most of the Agulhas Current
observations and has smaller lateral gradients, with less than half the salinity variation at
the minimum, just 34.31 <5 < 34.39 (Fig. 4.4). Interleaving of similarly reduced
intensity occurs over smaller and more regular vertical scales than in the Agulhas

Current.
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The 'deep’ oxygen minimum, underlying the AAIW, is mostly observed in the

range 32.1 £ o7 <32.2, with values from 3.5to 4.2ml I'! generally increasing

downstream.

4.6 Tracer extrema and anomalies at deep levels

Consistent with its Atlantic origin, the deep salinity maximum of the North
Atlantic Deep Water decreases in intensity from the Atlantic into and across the Indian
Ocean to the east (Wyrtki, 1971). The details of its circulation in the Retroflection
region and in the Cape Basin west of southern Africa and south of Walvis Ridge are
only now being studied. Preliminary examination of data in the Cape Basin suggests
that there is a deep cyclonic circulation there (J. Reid, pers. comm.). The western limb
of this deep circulation, flowing south along the western African continental slope,
would supply NADW to the western edge of the Retroflection at the slope's southemn
tip.

This, in fact, is exactly where the saltiest NADW is observed, on the inshore
side of the Agulhas Current at transect D, with s = 34.864 psu. Salty NADW,
5 2 34.860 psu, is also seen at the next Agulhas Current transect upstream,
transect C, and beneath the 1983 and 1985 Cape Town eddies. This is not the first time
that the saltiest water has been found at the tip of Africa; an s = 34.862 psu
measurement was taken by Jacobs and Georgi (1977) at the tip of the continental
slope,’ and Deacon (1937), also quoted in Jacobs and Georgi , remarked of the Meteor
observations that the NADW core lies "close round the Cape of Good Hope."

The deep geostrophic shear fields beneath the 1985 Cape Town eddy and at
transects D and C (moving along the weakening NADW core towards the Indian

Ocean) are quite active, with over 200 dbar net vertical isopycnals displacements at

5STD 269, R/V Conrad January-April 1974.
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NADW levels (~2700 dbar). The deep shear field seems somewhat decoupled from the
overlying Cape Town eddy shear, with the deep field differently shaped and shifted
onshore compared to the upper level field. At transect D it underlies and tilts the same
way as thermocline Agulhas Current isopycnals, giving monotonic shear from the
bottom to the surface.

The Agulhas Current at transect B is so far onshore and upslope that only one
station in the current (as defined by the transport field) is deep enough to reach the
NADW. NADW is found beneath the cold ring, just offshore, with the deep NADW
isopycnals rising in the middle of the ring, following the pattern of the overlying shear.
Superimposed on this, however, between the continental slope to the north and the
Agulhas Plateau, is a net increase in the depth of NADW isopycnals of, again, over
200 dbar. This means that the isopycnals slope the same way and change depth the
same amount in the Agulhas Passage beneath transect B and the cold ring as under the
Agulhas Current at transects C and D. Salinity at the NADW maximum decreases to
s < 34.845 psu at transect B and beneath the cold ring.

Some NADW may be carried in east in the Return Current, with the saltiest
value on transect E, s = 34.838 psu seen on the flank of the Agulhas Plateau.
Transect F crossed the Return Current as it passed directly over the Agulhas Plateau,
and the NADW signal is clearly disturbed by the >3000 dbar topography.

Values drop still further, to s < 34.830 psu, beneath the Agulhas Current at
transect A and at stations 268 - 271 between transects A and F, despite the fact that the

channel between Africa and the Agulhas Plateau is over 4000 m deep.

4.7 Steady heat flux across the Retroflection, part I: upper level exchange
Can we estimate the steady east-west heat flux across the Retroflection from the

1985 hydrography? First let us imagine transport between Africa and Antarctica
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partitioned into a Circumpolar part and a Retroflection part, with the Circumpolar
transport set equal to the transport at Drake Passage. The northem limit of Circumpolar
transport is found by integrating meridionally northward from Antarctica until the Drake
Passage transport value is reached. The remaining zonal transport in the passage
between Antarctica and Africa is then associated with the Retroflection. The
Retroflection'’s net east-west transport must be zero, neglecting transport cells involving
Bering Strait, since the Atlantic is (almost) closed to the north. Any net transport from
the Pacific Ocean to the Indian Ocean through the Indonesian straits must be balanced by
return transport south of Australia.

This implies that we can estimate steady heat flux across the Retroflection by
integrating heat flux meridionally southward from Africa across the Agulhas and
Agulhas Return Currents until the net mass transport is zero. This steady heat flux
estimate (i) excludes heat flux due to eddies and rings, and (ii) depends on a prescribed
thermohaline overturning (upper-layer-to-lower-layer water mass conversion) in the
Atlantic north of the Circumpolar Current. When the estimate is made from
hydrographic observations, it also (i) presumes that the synoptic fields represent the
steady fields, and (iv) depends on the arbitrary reference level/bottom velocities
supplied to the transport integration.

An estimate of the heat flux due to steady upper-level (z < 2000 m) exchange,
with thermohaline overtuming set to zero, is the only estimate that can be gotten from
the 1985 hydrographic observations alone. Fluxes per unit overturning transport are
discussed separately below; water diverted into the overturning cell for conversion to
lower layer water will be subtracted out of the upper-layer exchange.

The steady upper-level estimate represents a lower bound on the total
Retroflection heat exchanges since all the other exchange mechanisms increase heat flux

to the west. The other mechanisms include release of warm Retroflection rings to the
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west and incorporation of cold rings into the Retroflection [(i) above]; net warm-to-cold
overtuming in the Atlantic [(ii) above]; and increased steady upper-layer heat fluxes due
to the likely downstream reference level/bottom velocities beneath the Agulhas on the
continental slope [(iv) above].

To estimate the steady upper-level tracer fluxes across the Retroflection, we
exploit the water-mass boundary found near the velocity maximum in the Agulhas: the
westward Tropical Thermocline Water- and Red Sea Water-influenced transport on the
northern side of the Agulhas water-mass boundary is balanced by eastward
S. Atlantic/Circumpelar-influenced transport on the southern side of the Return
Current. Heat fluxes due to circulation of Retroflection interior water are neglected.

There are several reasons for estimating the steady upper-level fluxes this way.
First, the anomalous water found on the Agulhas inshore side is not observed returning
east with the Return Current. Second, water on the cyclonic, inshore side of the
Agulhas seems dynamically less likely to retroflect, due to its reduced velocity, the
potential vorticity source at the lateral boundary, and mass and momentum exchanges
with the adjacent S. Atlantic/Circumpolar water. Lastly, heat flux due to circulation of
the Retroflection interior water, which is relatively homogeneous laterally, is probably
negligible compared to the heat flux due to exchange of Agulhas inshore water with
Return Current water of very different properties.

Tracer characteristics in the westward transport on the northem side of the
Agulhas are represented by stations 276 and 259 on Agulhas transects A and B. Tracer
characteristics in the eastward transport on the Retum Current south side, just north of
the southern Retroflection transport integration limit,6 are represented by the

observations at stations 284 and 283 from transects E and F. The velocity profiles on

6 At about 110 km south of the 15 C/200 m contour in the Return Current; see Ch. 3.

127




the Agulhas inshore side are represented by station pairs 276-5 and 259-60 at Agulhas
Current transects A and B's northern ends and at station pairs 282-3 and 284-5 at
Return Current transects E and F's southern ends. It is assumed for simplicity that the
transport exchange takes place between columns of water that extend from the surface to
2000 m. In reality, Agulhas water inshore of the water mass boundary on the
continental slope is confined to shallower columns, but adjusting the heat flux
calculation to take this into account would require arbitrarily specifying the level at
which this water is retumed. Any adjustment for topography would tend to increase the
heat flux, so the values given below are, if anything, underestimates.

The exchanged transport is conservatively and uncertainly estimated at
M =12 + 8 Sv; Agulhas transport inshore of the water-mass boundary and velocity
maximum is in general 20 Sv or more.

Cross-stream distance Ax is given for each velocity profile v by

0

o
Ax = M ( fv dz }1. The steady upper-level heat flux Q is thus given by:

(2]
oM) = pCp [xnM) [vw 6dz + (4.1)

Z0

[
Axs (M) va 0 d:

20

assuming, for the moment, that there is no net overturning. The sign of Q is negative
because warmer water is flowing west and colder water is returning to the east.

The steady upper level heat flux range for 4 <M <20 Sv works out to be
-0.045 2 Q(M) 2 -0.22 PW (PW = 1015 W) for Agulhas transect A paired with

Return Current transect F, and -0.029 2 Q(M) = -0.15 PW for Agulhas transect B
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paired with Return Current transect E. Calculations are shown in spreadsheet form in
Table 4.b. The difference between the two transect pairs is small compared to the

uncertainty in the exchanged transport.

This heat flux may have a significant effect on Atlantic Ocean heat convergence
within the Retroflection latitude band: it corresponds to between (.04 and 0.32 of
Hastenrath's (1982) 0.69 PW estimate of northward heat transport across 32°S in the
South Atlantic. One wonders what the effect on box budget (e.g. inverse) calculations
is of using hydrographic data that does not fully resolve the flow on the upper
continental slope!

The steady upper-level exchange may also be compared to the heat lost at the sea
surface in the Retroflection, west of the transect-pair longitudes. A total heat_ loss of
-0.015 PW to the atmosphere corresponds to the local rate of ~-100 W m-2
(Bunker, 1982) times a nominal area of 4° x 4° (1.6 x 101! m2). This is only 50%
of the smallest value estimated for Q(M), so the steady upper-level heat flux must be
balanced by more remote heat sinks.

Finally, the steady upper layer exchange may be compared to a similar
calculation by Gordon (1985) across the 1983 Cape Town Eddy (CTE) at ~35°S,
which gave a value of 0.023 PW for a steady upper layer exchange of 13.5 Sv. The
values for Q(M = 13.5 Sv) in the Retroflection are 0.15 PW and 0.10 PW, a factor
of 4 to 6 larger. Thus, taking all these estimates at face value, it appears that most of the
heat flux westward across the Retroflection does not simply turn the comner in the upper
layer into the S. Atlantic north of 35°S.

4.8 Steady heat flux across the Retroflection, part II: the Atlantic Ocean NADW
overturning cell

So far this calculation presumes, as was mentioned above, that zero upper-to-

lower layer conversion is occurring in the Atlantic, and, equivalently, that transport

above 2000 m balances across the Retroflection and across the Circumpolar Current.

But the deep salinity influence of the North Atlantic Deep Water extending over the
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Velocity, cm s-1

Transect Ar

__Depth, m Transect F Transect E| Transect B
50 27.12 139.00! 41.02 49.05
100 24.44 134.241 38.03 49.00
500 15.67 99.70] 20.55 39.40
1000 10.19 50.69 8.71 31.94
1500 4.83 14.20 3.66 10.45
2000 1.48 1.63 1.25 0.10
Velocity * dz, m2 s-1
Depth, m{ dz, m| Transect F Transect A| Transect E| Transect B
50 50 13.56 69.50 20.51 24.53
100 50 12.22 67.12 19.02 24.50
500 400 62.68 398.80 82.20 157.60
1000 500 50.95 253.45 43.55 159.70
1500 500 24.15 71.00 18.30 52.25
2000 500 7.490 8.15 6.25 0.50
Running sum v*dz, m2 s-1
Depth, m Transect F Transect Al Transect E| Transect B
50 13.56 69.50 20.51 24.53
100 25.78 136.62 39.53 49.03
500 88.46 535.42 121.73 206.63
1000 139.41 7688.87 165.28 366.33
1500 163.56 859.87 183.58 418.58
| 2000 170.96 868.02 189.83 419.08
dx, m Sv-1
Transect F Transect A| Transect E| Transect B
5.85E+03 1.15E+03{ 5.27E+03| 2.39E+03
Potential temperature, deg C
Depth, m Transect Fi Transect A| Transect E| Transect B
50 16.89 19.76 17.16 21.99
100 13.38 17.03 13.36 19.21
500 6.91 10.26 7.68 12.01
1000 3.50 4.31 3.68 5.95
1500 2.66 2.99 2.72 2.70
2000 2.40 2.50 2.45 2.65
v * dz * pot temp * dx, C m3 s-1 Sv-1
Depth, m trans F trans A trans E trans B
50 1.34E+06 1.58E+06| 1.85E+06] 1.29E+06
100 9.56E+05 1.32E+06] 1.34E+06{ 1.12E+06
500 2.53E+06 4.71E+06{ 3.33E+06] 4.52E+06
1000 1.04E+06 1.26E+06] 8.45E+05| 2.27E+06
1500 3.75E+05 2.45E4+05| 2.62E+05{ 3.36E+05
2000 1.04€E+05 2.35E+04{ 8.08BE+04/ 3.16E+03

Table 4.b - Spreadsheet summary of upper layer heat exchange calculations.
Continued on following page.
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{Running sum v'pot temp'dz‘dx, C m3 s-1 Sv-1

depth, m trans F trans Al trans E trans B
50 1.34E+06 1.58E+06 1.85E+06| 1.29E+06
100 2.30E+086 2.90E+06] 3.19E+06] 2.41E+06
500 4.83E+06 7.61E+06, 6.52E+06! 6.93E+06
1000 5.87E+06 8.87E+06] 7.36E+06] 9.19E+06
1500 6.25E+06 9.12E+06] 7.62E+06| 9.53E+06
2000 6.35E+06 9.14E+06] 7.71E+06] 9.53E+06
Difference of running sums v‘pot temp*dz‘dx, C m3 s-1 Sv-1i

Transects F - A [ Transects E - B
-2.79E+06 -1.83E+06
...times rho*Cp, J Sv-1

-1.11E+13 -7.31E+12
Q4 Sv,208

-4 46E+13 -2.93E+13
-2.23E+14 -1.46E+14
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world deep ocean indicates that there is a net export of lower layer NADW from the
Atlantic.

The return flow into the Atlantic balancing export of NADW must be composed
of thermocline, intermediate, and/or bottom water. Renewed interest in their relative
contributions to the return flow have been fueled by speculation about possible climatic
implications of return flow composition. Gordon (1985, 1986) estimated an entirely
warm return flow from estimates of NADW transport and of ocean heat flux, both
across 30°S in the Atlantic. This warm (2 9 C) return flow would have to make its
way back to the Atlantic via the Indonesian straits from the Pacific Ocean, and via the
Agulhas Retroflection from the Indian Ocean, since the warmest water in Drake Passage
is 8 C. Local geological or physical changes at the Indonesian straits or the
Retroflection might, in this scenario, have global climatic implications through
modulation of the global thermohaline circulation.

The warm water path hypothesis was subsequently tested by Rintoul (1988),
using an inverse model of South Atlantic observations. Rintoul first found that NADW
transport across 30°S and heat flux across 30°S were closely related: prescribing higher
heat flux caused the inverse model to produce a more vigorous NADW overtuming cell.
The inverse model's northward retum flow across 30°S had stable composition over the
entire range of reasonable heat flux values, of about half intermediate and bottom water,
and half thermocline water.

Rintoul then forced the inverse model to produce Gordon’s net warm water flow
from the Indian Ocean into the Atlantic. This produced a model circulation with
unreasonable characteristics, including substantial heat convergence (1 PW) in the
S. Atlantic between 32°S and the Weddell-Scotia Sea and model reference level
velocities an order of magnitude higher than those in the inverse model without imposed

warm flow. Rintoul concluded that NADW transport and heat flux across 30°S could
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not be specified independently, and that the warm water path was an artifact of
Gordon’s having specified both heat flux across 30°S (0.69 PW) and an NADW
transport across 30°S (16 Sv) that was much lower than the NADW transport produced
by the inverse model (27 Sv) for the same heat flux.

Taking all of this into consideration, here we simply estimate the additional heat
flux per unit overtuming transport. Overturning transport refers to water that leaves the
Retroflection on the north side of the Agulhas and retums as NADW, rather than as
upper-layer water in the Return Current. The NADW potential temperature is
6 =22 C, which is 4.8 C colder than the transport-weighted Return Current upper
level potential temperature 6 = 7.0 C, for a resulting increase in westward heat flux of
-0.019 PW Sv-! (Sv = 106 m3 s-1), expressed as energy per unit transport diverted
from the upper-level exchange cell into the NADW overturning cell. The total heat flux
associated with transforming upper layer water leaving the Retroflection into NADW is
-0.030 PJ Sv-1.7

To summarize, a steady upper-level (z < 2000 m) heat flux of between
-0.029 and -0.22 PW (westward) is associated with westward upper-layer transport
of 12 £ 8 Sv inshore of the Agulhas water-mass boundary and an eastward retum
transport of equal magnitude on the south side of the Return Current. Westward heat
flux increases by -0.019 PW for every Sv diverted from this upper-level exchange into

overtuming exchange between upper-level water and North Atlantic Deep Water.

"Note that the 'horizontal circulation' involving the Brazil Current and its interior return
flow have been omitted from this discussion. It should be noted in particular that the
heat flux across 30°S corresponds not to the NADW overturning alone, but to the
combined NADW overturning and Brazil Current cells.
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4.9 Conclusions

Consistent water mass boundaries in the upper 300 dbar are observed near the
velocity maximum in all the Agulhas and Agulhas Return Current transects. Tropical
Thermocline Water (low oxygen, constant or decreasing salinity with depth) is observed
on the inshore side of the Agulhas, and Subtropical Surface Water (SSW, salinity
maximum) and Subtropical Mode Water (STMW, potential vorticity minimum, oxygen
maximum) on the offshore side.

The Agulhas undergoes a complicated adjustment in structure at transect B.
Current narrowing and offshore shift of the water-mass boundary and velocity
maximum at transect B increases the width of the inshore regime, both in absolute
distance and as a proportion of the current cross-section, and severely reduces the width
of the offshore regime, confining it to a smaller proportion of a narrower current.
Relative to all the other transects, transport, total width, and the width of the offshore
side of the current are decreased at transect B, while the width of the onshore side of
the current is increased.

A water-mass boundary is also observed in the two 1985 Agulhas Retum
Current transects, between the Retroflection interior water-masses (SSW and STMW)
on the current's northern side and fresher, more highly oxygenated
South Atlantic/Circumpolar water on the southern side.

Tracer properties at the thermocline and intermediate levels at transects C and D
exhibit signs of input from the south side of the Return Current, evidently entrained into
the Agulhas Current between Agulhas transects B and C, in the onshore limb of the
Retroflection recirculation cell found downstream from the partial retroflection and the
cold ring. Water from the south also intruded directly across into the Return Current, as

it did in 1983 (Gordon, et al., 1987 ).
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The Subantarctic Mode Water (SAMW) g minimum values and core densities are
in good agreement with McCartnev's (1982) SAMW observations on zonal sections
across the South Indian Ocean. SAMW core density increases, faintly, towards the
outer edges of the Retroflection, consistent with McCartnev's analysis of the SAMW
formation mechanism.

Some disruption in the the Subantarctic Mode Water core density and
thermocline potential vorticity field, perhaps due to boundary mixing or torques, is
observed hard by the continental slope in the Agulhas.

Red Sea Water high-salinity, low-oxygen influence at intermediate levels is seen
pressed up against the slope on Agulhas transects A and B. Further downstream, at
transects C and D, the strongest RSW influence is separated from the slope by a ribbon
of fresh Antarctic Intermediate Water (AAIW) of S. Atlantic origin.

The North Atlantic Deep Water salinity maximum is found pressed up against
the foot of the continental slope, beneath the 1983 and 1985 Cape Town Eddies, and
transect D at the southemn tip of the slope. The salinity maximum decreases in intensity
from west to east. The shear is consistent with a shallower reference level and flow to
the east: isopycnals descend fairly consistently ~200 m from north to south beneath the
Agulhas (and the cold ring) in the Agulhas Passage, and more across transect D, west
of the Passage. They ascend ~200 m across the 1985 Cape Town Eddy, but a
shallower reference level is still necessary for the saltiest water to be flowing
southward.

If the westward flow of water inshore of the Agulhas water mass boundary is
balanced by eastward flow of water on the south side of the Return Current, a steady
east-west heat flux across the Retroflection results. The exchanged transport was first
estimated to be between 4 and 20 Sv, and it was assumed that both flows were

composed of 2000) m deep water columns. A range of heat flux values between -0.029




and -0.22 PW (with eastward positive) was then computed from selected stations at
two sets of paired transects. If indeed this exchange is a reasonable model of what is
really happening, this would seem to be a low estimate: balancing warm, shallow
columns flowing west with deep columns flowing east, for example, would increase it.
The heat flux estimated here is 4 to 6 times greater than the values computed by
Gordon et al. (1987) using a similar method across the 1983 Cape Town Eddy.

Every Sv (106 m s3) that flows west and returns east in the North Atlantic Deep
Water layer instead of returning at <2000 m depths in the Return Current increases the

westward heat flux by -0 019 PW Sv-1,
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Chapter 5: Velocity and total potential vorticity

5.1  Introduction

So far we have examined the path of the current and its transport and tracer
fields. This examination has yielded new insights into the Agulhas Retroflection
circulation, confirming some existing ideas about its characteristics, challenging others,
and suggesting new questions. The current path, as we have seen, can turn more
sharply and cut across isobaths more strongly than expected from previous observations
and models. Current transport definitely reaches values that are greater than the upper
limit of the range predicted by linear theory from observed winds, but does not, as was
often tacitly assumed, increase monotonically downstream. In fact, the current
retroflection can occur in two branches (at least) having comparable transport, with
substantial recirculation beyond the first branch and rapid along-stream transport
variation between them.

Sharp tracer fronts are found in the near-surface layer (<300 m) near the
current's velocity maximum: nearly-isohaline, low-oxygen, highly stratified water from
the tropical thermocline is found on the inshore side of the Agulhas; slight salinity
maximum, high-oxygen, relatively homogeneous Mode Water created at the surface
within the subtropical gyre is found within the Retroflection; and fresher, high oxygen
water from the S. Atlantic/Circumpolar regime is found south of the Return Current. At
intermediate levels (1000 < z < 2000 m), a thin ribbon of anomalously salty, low-
oxygen, highly stratified water from nc 2em Indian Ocean sources is found pressed up
against the continental slope. Another thin ribbon, of the saltiest deep water from the
Atlantic, enters the Indian Ocean pressed up against the foot of the continental slope

around the tip of Africa.
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Ultimately, one wants to understand the dynamics of these features, many of

which were observed or observed clearly for the first time by the 1985 hydrographic

survey. The next step towards this goal, having completed the characterization of the

overall circulation, is an examination of the velocity and total potential vorticity fields of

the currents.

In this chapter:

The geostrophic velocity field is discussed (Sec. 5.2).

An expression for potential vorticity in natural, along- and across-stream,
isopycnal coordinates is introduced (Sec. 5.3).

The relationship between a Rossby number &, based on the total velocity and
parcel trajectory curvature, and a Rossby number &, based on geostrophic
velocity and geostrophic streamline curvature, is explored (Sec. 5.4).

The magnitudes of individual potential vorticity terms in the Agulhas and
Agulhas Return Current are estimated, and some remarks are made about
possible dynamical balances (Sec. 5.5).

The Agulhas and Agulhas Return Current potential vorticity cross-stream
gradients are computed, to determine if and in what way they meet the necessary
conditions for baroclinic and barotropic instability (Sec. 5.6 and Sec. 5.8).

The relationship of the Agulhas and Agulhas Return Current (and Guif Stream)
potential vorticity cross-stream gradients to the local Mode Waters is discussed
(Sec. 5.7).
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These investigations characterize the Currents, and prepare the way for an
examination in the next chapter of Agulhas Current and Retroflection models, their

dynamics, scales, geometry, assumptions, and simplifications.

5.2 Geostrophic velocity

Some intrinsically interesting features of the current's geostrophic velocity field
are described here. Geostrophic velocity sections across the Agulhas and Agulhas
Return Currents are shown in the Atlas. Note that average geostrophic velocity between
the two hydrographic stations is the quantity discussed below. It tends to underestimate
the magnitude of geostrophic velocity extrema, and may differ significantly from the
total velocity when trajectory curvatures are not small (see Sec. 5.4).

Surface and near surface velociry. The maximum surface velocity at the Agulhas
Current transects is:

1.78 m s~} at transect A relative to a 1700 m deepest common level (dcl),

0.83 m s-! at transect B relative to a 900 m dcl,

1.13 m s-! at transect C relative to a 1500 m dcl, and
0.96 m s-! at transect D relative to 2400 dbar.

Surface velocity values as high as 2.60 m s-1 (averaged over 24 hours) have been
observed directly in the Agulhas using satellite-tracked drifters and current meter
measurements from a drifting ship within radio positioning range of the
coast (Griindlingh, 1977).

The surface velocity maximum at transect B would be 1.44 m s-! if the bottom
velocity beneath it were 0.61 m s-1, the maximum velocity at 900 m on transect A,
found one station pair offshore from the surface velocity maximum there. The

maximum at transect C was found at the most inshore station pair and is the sum of
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0.56 m s-! due to the 1500 to 200 m shear, plus a huge 0.57 m s-! due to shear in the
upper 200 m, within the onshore side of the current's superficial warm core.

There is a second surface velocity maximum at transect C which overlies the
main velocity maximum at deeper levels. The double maximum structure arises from an
onshore shift in the wanm core location relative to the underlying current. The second
maximum has a value of 0.85 m s-! relative to 2400 dbar, and is separated laterally
from the larger maximum listed above by a local minimum of 0.61 m s-!. This
maximum arises mostly from strong upper deep and intermediate level shears, which are
well correlated with tracer anomalies at these levels. Velocity actually increases with
depth here, from (.85 m s-! at the surface to 1.00 ms-! at 150 m, since the surface
warm core shear is opposite in sign to the underlying shear. Subsurface velocity
maxima occur in the upper 200 m or so at some of the other Agulhas station pairs as
well.

The maximum surface velocity at the Agulhas Return Current transects is:

0.68 m s-! at transect E relative to a 2400 dbar reference level, and
1.28 m s-1 at transect F relative to a 2400 dbar reference level.

This apparent downstream increase in maximum surface velocity from transect E to
transect F is not surprising, given that transport at transect F is about 131- times as large
as transport at transect E: Return Current transport at transect E is joined by the first
Agulhas Current retroflection branch between transects E and F.

The velocity maximum at transect E was probably significantly underestimated,
as a result of station positioning: the maximum velocity value was observed at two
consecutive station pairs, involving three consecutive stations. It seems likely that

stations offset by half a station spacing width would have better resolved the maximum.
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Further, note that minimum station spacing in the Returmn Current is twice as large as
minimum spacing in the Agulhas.

Horizomal maximum of velocity at other depths. The velocity maximum tends
to shift inshore with height at Agulhas Current transects A, B and C (as can be seen in
the Atlas contoured sections of velocity). This means that the velocity maximum line
parallels the continental slope over the whole water column, keeping the width of the
jet's cyclonic side relatively constant with depth. As if to confirm this point, the
velocity shifts onshore with height only in the upper 200 m at transect D, where the
current has separated away from the slope. A similar onshore shift with height is also
observed in the Kuroshio and Gulf Stream, the other large western boundary currents
(Worthington and Kawai, 1972).

Intermediate and deep boundary currents. Tracer anomalies at intermediate and
deep levels are found near the high velocity core at all the Agulhas Current transects
(compare Atlas contoured sections of salt, oxygen, and velocity). The anomalously
salty, low-oxygen Red Sea Water from the Indian Ocean and the salty North Atlantic
Deep Water are found in layers of enhanced shear, suggesting deep westem boundary

currents for these water masses.

5.3 Vorticity in natural isopycnal coordinates

It is desirable to look at the vorticity in a coordinate system in which each term
has an invariant physical interpretation. Along- and across-stream coordinates are
customarily used in studies of western boundary currents (Kawai, 1957, Chew, 1974).
These so-called natural coordinates transform the velocity from arbitrary Cartesian
components into along- and across-stream components. Relative vorticity is
transformed from three shear terms in the three Cartesian directions into a single cross-

stream shear term and a single curvature vorticity term.
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Natural coordinates were also used by Hall (1985 ), who estimated cross-stream
shear but not curvature vorticity. Hall also estimated vorticity due to vertical shear of
along-stream velocity and isopycnal tilt.] Small vorticity terms due to curl of vertical
velocity are all dropped in these natural coordinate formulations; we shall do the same
here.

The vorticity due to vertical shear of along-stream velocity, included in Hall’s
estimates but not in Kawai's and Chew's expressions for jet vorticity, is not
necessarily negligible in westem boundary currents compared to horizontal shear
vorticity. In fact, vorticity terms due to vertical and horizontal shear have comparable
maximum values in the Gulf Stream, as Hall demonstrated using direct measurements of
velocity and temperature. These vertical shear vorticity terms are non-quasi-
geostrophic, and are dropped from the quasi-geostrophic equations. The ratio of
vertical shear vorticity to horizontal shear vorticity is £5-/, in terms of the usual non-

’ 22
dimensional numbers ¢, the Rossby number,]%, and S, the Burger number, N?iH?—

with f the Coriolis parameter, L the length scale of the motion, N the buoyancy
frequency, and H the water depth. As is shown in the derivation of the vorticity
equation in isopycnal natural coordinates in Appendix A, €5/ is just AW/H, where Ah
is the depth variation on an isopycnal over the cross-stream distance, and H is the depth
over which the velocity varies. Gulf Stream and Agulhas values of €S-/ are
comparable, both being about 1.

Isopycnal natural coordinates, derived in Appendix A, can be used to combine

cross-stream shear vorticity and along-stream vertical shear vorticity into a single

IThe vorticity terms due to vertical shear arise from the dot product:
. Vuh

where A is usually potential density or potential temperature (Pedlosky, 1979).
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isopycnal shear vorticity term without further approximation, simply by taking the
cross-stream coordinate along isopycnals instead of along a horizontal surface.
Total potential vorticity, ¢, then becomes:

. N IA
q ~ (f + K - %:-’1—) + (5.1)

calling the isopycnal cross-stream coordinate n’, the path curvature K , and the tracer
used to mark the location of material surfaces A (usually potential density or potential
temperature in practice). Along- and across-stream flow directions vary with depth,
defined by . The only terms neglected in deriving Eq. (5.1) are (a) vorticity due to
curl of vertical velocity (negligible since W/L << U/H) and (b) planetary vorticity
variation with latitudinal isopycnal tilt, which in western boundary currents is ~0.01

compared to the planetary vorticity itself.

5.4 Some interesting consequences of path curvature

We now briefly examine the effects of curvature of geostrophic streamiines and
parcel trajectories. Path curvature can lead to significant differences between purely
geostrophic velocity v and total velocity v'. There can also be differences between the
curvature of geostrophic streamlines K, (intersection of pressure and depth surfaces)
and curvature of actual parcel trajectories Kj.

The degree and nature of the differences, when time-dependence can be

neglected, is illustrated by the relationship between a curvature Rossby number based

’

. . Kgv
on the geostrophic velocity, £, =—§—x-, and a curvature Rosshy number based on the

. Kv’ ) ) .
total velocity, &£ =—}——(the prime is used here to denote the along-stream isopycnal




velocity). Taking the gradient wind equation (Holron, 1979), from which time-

dependent terms have been dropped, and solving quadratically for £ gives:
-1 K
£k = > 1¢\/(1+4-ie) (5.2)
k=72 { Kg ¢

Setting K = Kz, appropriate for a steady ring, the relationship of £ and & (and thus
ve' and v') may be plotted (Fig. 5.1).

The expression Eq. (5.2) includes three cases:

(i) Inertial flow, in which the pressure gradient and thus vg and & vanish.
The two roots are (a) € and v’ both vanish (trivial root), or (b) & = -1,

v’ o= T-(L(physical root).
S

(ii) Gradient wind flow. The physical root giving & ~ £, arises from
subtracting the radical. The minimum allowed value of & is -0.5, and real

values of & require &8 2 -0.25, K, and K having the same sign.
q K, ¢ g

(iti) Here % |£g < -0.25, and trajectory curvature and geostrophic curvature

have opposite signs so that & has real roots: parcels flow cyclonically

around intense high pressure centers. Again, the physical root giving
Ex ~ Eg arises from subtracting the radical.

The second and third of these cases are relevant to the Agulhas path and rings.
Where K = K, is appropriate, as in steady rings, the relationship between the total
velocity and geostrophic velocity magnitudes is straightforward (Fig. 5.1). Total
velocity is less than (greater than) geostrophic velocity in cyclonic rings with g, > 0
(anticyclonic rings with & < 0), since the pressure gradient is partially balanced by the
centrifugal acceleration term: for example, when g, =0.25, & =0.21, and

v’ = 0.83 vg. The greatest discrepancy between total and geostrophic velocity
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Fig. 5.1 — Curvature vorticity Rossby number & = Kv'/f, based on curvature of
actual parcel trajectories K and total velocity v’, plotted (solid line) as a function of

geostrophic curvature Rossby number &g = Kgv,'/f, based on geostrophic curvature
K, and geostrophic velocity vg’, for K5 = K, e.g. steady ring. The dashed line

shows the £ = £ curve.
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magnitude occurs when £, = -0.25 and the radical in Eq. (5.2) vanishes (the tightest
anticyclonic rings allowed), giving & = -0.5 and v’ = 2v,.

More generally, for cyclonic and small anticyclonic values of geostrophic
curvature vorticity in a meandering current, a parcel can follow a trajectory that is more
or less tightly curved than the geostrophic path. Parcels may 'spin out' of steepening
anticyclonic meanders as the centripetal acceleration plus the pressure gradient
overcomes the opposing Coriolis acceleration [as in case (iii) above]. Significant cross-
frontal motion, and thus departure of real curvature from geostrophic curvature, was
observed throughout Gulf Stream meander patterns by Bower (1988).

What are the geostrophic curvature and geostrophic Rossby numbers in the
Agulhas? At the 1985 Agulhas transects, geostrophic curvature Ky is essentially zero at
transects A, D, E and F, and anticyclonic (>0 anticyclonic in the southern hemisphere)
with a nominal value of 0.028 km-! (80° in 50 km and 95° in 60 km, respectively) at
transects B and C, judging from the satellite image of sea surface temperature at
transect A and the 15 C temperature/200 m depth contour at transects B - F.

Geostrophic curvature yvorticity at transects B and C is Kgv; ~ 2.0 x 10-5 s-1,
based on the 15 C/200 m contour curvature and velocities at the contour in the upper
200 m of 20.7 ms-1. The Coriolis parameter f is -8.3 x 10-3 s-1, which gives a

value for & of -0.24. By Eq.(5.2), gisg must be greater than -0.25, so these
g

meanders are just above the critical value of & =-0.25 beyond which K must be

smaller than Kg. Again, time-dependence has been neglected here for the sake of
discussion. In reality, time-dependence may well be important. The observations
necessary to quantify it are lacking from the 1985 survey.

The even larger curvatures in the Aguihas Current beyond its separation from the
continental slope and in the Return Current, if accompanied by similar velocities

(regrettably, there are no measurements of velocity at the sharp turns), would have g
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values much less than -0.25 and thus considerable cross-stream velocities, or

considerable time-dependence.

5.5  Estimates of potential vorticity terms in the Agulhas from the 1985 hvdrography

Having had a preliminary look at the curvature vorticity, now the other vorticity
and potential vorticity terms are estimated as completely as possible from the 1985
observations. Recall from Eq. (5.1) that there are three vorticity terms: a Coriolis term
f due to planetary rotation, a curvature term Kv’, and an isopycnal shear term ov/on’.
The planetary vorticity is just the sum of these three terms, weighted by the vertical
separation of material surfaces, customarily indicated by the vertical gradient of a
suitably conserved tracer. Estimates from the near-surface layer, where the two relative
vorticity terms are largest, are discussed below and summarized in the conclusions to
this chapter (Sec. 5.9).

The Coriolis parameter, f, is -9.0 x 10-3 s-! at the mean latitude of the

Retroflection region, 38°S. This value is equivalent to cross-stream isopycnal shear of
-3.6 m s-! over 40 km, the separation of cross-stream distance tic marks in Atlas
sections of velocity, and to a radius of curvature at unit velocity R; of -11 km per
1 m s-1 (cyclonic <0, southern hemisphere).

The Coriolis parameter variation, &f over the latitude range occupied by the

Retroflection during the 1985 survey, 34.5-41.5°S, is 30.08 If,|, where f, is the
Coriolis parameter in the middle of the latitude range. This variation in f is equivalent
to cross-stream isopycnal shear of #0.28 ms-! over 40 km, and to an R; of

36 kmp:r 1 ms-L

ic velocity cross- isopyc 9-‘ can be estimated only

at the CTD transects. Anticyclonic isopycnal shear (—3—1> 0, »’ pointing into the

Retroflection) has an observed maximum on the warm, offshore side of the Agulhas at
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transects A, B, and C, of 0.60 m s-! over 40 km. This corresponds to a geostrophic
shear Rossby number of -0.17. Anticyclonic isopycnal shear is smaller at transect D,
corresponding to a Rossby number of -0.10.

Anticyclonic isopycnal shear cannot be reliably estimated at the Return Current
transects E and F because stations at the warm northemn ends of these transects were not
taken consecutively. Very high values of apparent isopycnal shear are observed
between the non-consecutive stations.

Cyclonic isopycnal shear, —g—:é< 0, has an observed minimum above the
~1500 m isobath on the inshore side of the Agulhas at transect A, with a value of
-1.5ms"! over 17 km (-3.5 m s-! over 40 km), corresponding to a geostrophic
shear Rossby number of 0.98. Unknown deepest common level (dcl) velocities may
make a significant contribution to isopycnal shear here, since water depths range from
600 to 2100 m beneath the strongest cyclonic shear.

Geostrophic path curvature, K,, can be estimated at 200 m from the
15 C temperature/200 m depth contour heading (Fig. 2.5). Path curvature varies
from -0.046 km-! (-70° over 30 km), in cyclonic meanders of the Agulhas Current
along the continental slope, to +0.14 km-! (130° over 20 km), where the Agulhas

Return Current turns anticyclonically northeast toward the Agulhas Plateau. The radius

of curvature, R, ranges from -oo to -25 km and from +10 to +co km.

Geostrophic path curvature vorticity, Kgvg, can be estimated only at the
intersection of transects B - F and the 15 C/200 m contour, where beth K and v,
can be estimated. Agulhas transects B and C are located at the crests of successive
anticyclonic meanders, with fairly similar values of K, andvg (see Sec. 5.4 above)
giving a geostrophic curvature Rossby number of £, = -0.24. The path curves very
gently at transect D, for a geostrophic curvature Rossby number of ~ 0.04. Path

curvature at transects E and F is effectively zero.
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At the sharpest tumn in the path, where the Agulhas Return Current turns
northeast towards the Agulhas Plateau, there is no way, unfortunately, to estimate
velocity, not from a CTD transect nor even from the satellite sea surface temperature
image.2 If the velocity value from the intersection of transect E and the 15 C/200 m
contour 350 km downstream were used (vg’ is 0.50 m s-1 there), £g would be -0.78.

The sum of the planetary vorticity, the curvature vorticity, and the isopycnal
shear vorticity are all weighted by the vertical gradient of a suitably conserved tracer. If
this gradient decreases (increases) following a fluid parcel, vortex tubes are stretched
(squashed), which implies changes in the planetary or relative vorticity or external
torques. Vortex stretching (dw/dz) is, through continuity, linked to horizontal
divergence (du/dx + ov/dy).

The Atlas contoured sections of planetary potential vorticity show the varying
thickness of isopycnal sheets (the planetary vorticity gradient itself, B, makes only a
small contribution). Where planetary potential vorticity values are low, vertical
gradients are weak, and vortex tubes are relatively long. Strong gradients of vortex
length are observed at upper levels across all the Agulhas and Agulhas Return Current
transects, with relatively weakly stratified water observed within the Retroflection and
more strongly stratified water observed on cold onshore side of the Agulhas, and on the
cold southern side of the Return Current. A parcel’'s vortex length, like salinity,
oxygen, and other tracers, is set initially in the surface mixed layers, with the thickest
layers, the Mode Waters, coming from regions where deep convection occurs; the
vortex length is then modified as it circulates by mixing, torques, and variations in

absolute vorticity.

ZVelocity estimates might, in principle, be derived from the off-15 C/200 m contour
XBTs, but position errors, limited spatial data coverage, strong thermohaline
interleaving across the Return Current, and the shallow maximum depth, 700 m for
these XBTs, would introduce large uncertainties.
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Significant isopycnal vortex length gradients are observed from sea surface
isopycnals down to 07 ~ 32.2 (~1800 m) in the Agulhas Current, and down to
Oy ~ 27.2 (~1200 m) in the Agulhas Return Current. The greater depth to which
gradients extend in the Agulhas is due to contrasts between Indian origin water on the
inshore side and Atlantic/Circumpolar origin water on the offshore side of the Current at
Antarctic Intermediate Water and deep oxygen minimum levels.

The largest cross-stream gradients occur at the Subtropical Mode Water potential
vorticity minimum level near 200 m depth, in both the Agulhas and Agulhas Return
Currents. Planetary potential vorticity increases by up to a factor of 8 (i.e., 6 contour
intervals of V2 each) onshore across the Agulhas over a distance of 50 - 100 km. If a
parcel were to traverse the front moving onshore at this level, in the absence of torques,
it would acquire cyclonic planetary vorticity of 71

The cyclonic isopycnal cross-stream shear at transect A is, recall, as strong as
observed at any of the transects and as large as £ The potential vorticity due to cross-
stream isopycnal shear at transect A is shown in Fig. 5.2; it may compared with the
Atlas contoured section of planetary potential vorticity at transect A. The cross-stream
gradients of the two quantities both increase onshore, with comparable magnitudes
there. Thus tremendously strong potential vorticity changes accompany any cross-
stream motion. Evidently, in the upper level Agulhas and Return Currents (where a
similar if less intense arrangement is observed), potential vorticity conservation presents
a formidable barrier to cross-frontal motion.

It appears that curvature potential vorticity variations following a fluid parcel can
be balanced by small cross-frontal displacements. The curvature vorticity Rossby
number varies along a geostrophic streamline from +0.3 to -0.8. At the level of the
Subtropical Mode Water, where potential vorticity gradients are largest, this variation

can be balanced by a cross-frontal displacement across one-seventh the total potential
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vorticity gradient. This means that curvature vorticity can be balanced by cross-frontal
parcel displacements of one-seventh of the front width, i.e., 20 km displacements
across a 140 km wide front, if we use a linear gradient as an approximation. Vertical
excursions of ~100 m along isopycnals sloping up by ~700 m would be associated
with parcels experiencing such cross-frontal displacements. Indeed, vertical excursions
of this type (upward and onshore in meander crests, downward and offshore in
meander troughs) have been measured directly using quasi-isopycnal floats in the in the
Gulf Stream (Bower, 1988). And Chew (1974) notes that for dynamical reasons

curvature and shear vorticity tend to offset each other, as they do here, with anticyclonic

meanders moving onshore into a higher cyclonic shear region (and shorter vortex

lengths).

5.6  Agulhas and Agulhas Return Current instability — I. Baroclinic conditions

Instabilities of ocean currents have been subjected to extensive theoretical study,
including the work of Gill et al. (1974), Robinson et al. (1975), Talley (1982), and
many others. Here, Johns's (1988) recent paper, which includes a good review of
previous work, is taken as a starting point.

Johns, following the work of Bryden (1979) and Wright (1981) in the Drake
Passage, compared the results of a simple baroclinic instability model to dispersion
relations and growth rates of Gulf Stream meanders, estimated from inverted echo
sounder (IES) time-series observations of thermocline depth. The model is linear, one-
dimensional, purely baroclinic, and confined to a channel, with quasi-geostrophic
scaling; the equations are by now standard and will not be reproduced here. The limited
correspondence between solutions to this one-dimensional (z only) model, solutions to
layered models, and solutions to a fully two-dimensional (y, z) model have been noted

by Kiliworth (1980). However, since the model still seems to have been useful in
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Fig. 5.2 — Buoyancy potential vorticity due to cross-stream isopycnal shear,a-; ra
at the most upstream Agulhas Current transect, transect A (transect location shown on
tiny map). The reader should compare this figure to the transect A contoured section
of planetary buoyancy potential vorticity shown in the Atlas. Units here, as’in the Atlas,
are 10-12 m-1 s-1. Here cyclonic potential vorticity values are greater than zero, and
anticyclonic values are less than zero (opposite from Atlas). Cyclonic values seen here
are the largest of the 1985 survey.
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understanding time-series observations in the Gulf Stream and in the Drake Passage, it
seems worthwhile to compute the model input profiles for the Agulhas, in anticipation
of their use in modelling forthcoming time-series observations in the Agulhas [e.g. the
1985-7 Retroflection current meter observations of Luyten (pers. comm.) ].

The Agulhas and Gulf Stream velocity and mean potential vorticity gradient (Qy)

profiles are remarkably similar. The Agulhas Qy profiles are even more similar to a

synthetic profile whose instability characteristics Johns explored, so intelligent
speculation on the likely results of a linear baroclinic model solved for realistic Agulhas
profiles is possible. Comparison of these speculations with time-series observations in
the Agulhas will soon be possible using the 1985-7 current meter records now being
analyzed by Luyten (pers. comm.)

The model's input profiles are the mean (averaged in y) geostrophic velocity U,

the mean buoyancy frequency squared N2, and mean cross-stream gradient of the basic

state potential vorticity, Qy = B- Uyy - % (I%-Uz) As Johns notes, the last,

baroclinic, term of Qy corresponds to vertical gradients of isopycnal slope, using
thermal wind to get g;(%uz) = % (f ik p)

Note that the Uy, (barotropic) term is neglected in the y-averaged problem.
Johns points out that for a parabolic jet profile, Uyy is proportional to -U(z) and has its
largest magnitude, of O(-4 x 10-10 m-1 5-1) for a Guif Stream with 50 km half-width,
near the surface. The Uy, term thus shifts the Oy profile in the negative direction
everywhere, most near the surface; as the various profiles in the Gulf Stream and the
Agulhas will show, this does not change the basic structure of Oy very much. Note that
these remarks apply only to Qy across the intense, central part of the jet: the barotropic

term across the entire Agulhas jet is briefly discussed in Section 5.8.
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It must be noted that the relative importance of barotropic and baroclinic
mechanisms in producing current fluctuations cannot be assessed from linear, pure
baroclinic or pure barotropic models and hydrographic data alone; this question must be
addressed with more sophisticated models and time-series observations. It should also
be noted that, as always, the potential vorticity gradient profiles called for by the models
and the observed profiles are not necessarily the same thing: the observed profiles may
be contaminated by the instability processes to some degree, relative to the model
profiles. All that can be said is that the observed profiles give some indication of the
potential for further instability.

The necessary conditions for instability are:

(1) Qy changes sign between the top and bottom boundaries;

(2) Qy at some level has the opposite sign from U, at the surface; or

(3) Qy at some level has the same sign as U (I - h;,‘ ) at the bottom, where h§
is the ratio of bottom slope 4, to the slope of deep isopycnals.

The Gulf Stream profiles are reproduced here as Fig. 5.3 (John's Fig. 1). All
three of the necessary conditions are met in the Gulf Stream since @), changes sign.
Johns notes that that the instabilities produced by the model are basically interior in type
[necessary condition (1)], since their steering levels fall in the 600 - 1500 m range, far
from the top and bottom boundaries, so the boundary terms that give rise to necessary
conditions (2) and (3) make relatively small contributions. Note also that f is
negligible, since it is as much as two orders of magnitude smaller than the baroclinic

term of Q).
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The Agulhas and Agulhas Return Current profiles? of u, u; N2, f SZ;,J p» and Q,

are shown in Fig. 5.4 - 5.15. Agulhas and Agulhas Retumn Current Q, profiles are
shown at each current transect (Fig. 5.4 - 5.7) averaged laterally on (/) depth
surfaces (solid Qy curves) plotted vs. depth, and (2) potential density surfaces (gray Q
curves) plotted vs. mean isopycnal depths. The depth-averaged and density-averaged
Qy profiles are generally similar in shape, but since the density-averaged curves give
better resolution in the upper water column and less noise in the lower water column,
they are used for the discussion that follows. Some of the differences between the two
types of curves, especially the greater noise in the deep depth-averaged curves are the
result of the necessarily different vertical smoothing schemes: the depth-averaged
curves were smoothed using a Gaussian of constant width in depth units, while the
density-averaged curves were smoothed by averaging into potential density bins of
constant width in density units, within each potential density parameter (0,, 07, 03)
range; this effectively smooths over a larger depth interval when stratification is small.
The relationship between the shape of the profiles and the local Mode Waters is
discussed briefly in the next section.

The Agulhas and Agulhas Return Current @y profiles all change sign at least

once, thereby meeting the necessary conditions for baroclinic instability. In fact, there is

3The stations used in the averages are:

Transect Stations

272 - 277

260 - 257

293/5/7/8 (intervening stations end at mid-depth)
247 - 243

284 - 287

282 - 279

TmoOw»

Stations that bracketed significant downstream transport were included. Profiles are
plotted with east positive, so U<0 in the Agulhas Current and U>0 in th: Return
Current and in the Gulf Stream. Note that the problem is symmetric in x in the Agulhas

and Gulf Stream, since f is negligible.
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remarkable similarity in overall shape between the Gulf Stream, Agulhas, and Agulhas
Retun Current Qy, profiles - except for the Agulhas Current transect B profile, which
is wildly different. This is hardly surprising, given that the Current at transect B
displays numerous other radical differences from current structure at all the other
transects: the current at transect B is displaced far up onto the upper slope, has much
reduced transport, and displays related changes in physical structure and tracer fields
(see Chs. 3 and 4).

Each of the similar profiles has: (/) positive Q, increasing with depth, taking
the downstream direction as positive, from near the surface to about 200 m;
(2) positive Qy decreasing with depth between 200 m and a remarkably consistent zero
crossing level of 650 m in the Agulhas and 600 m in the Gulf Stream; and (3) negative
Qy between 600 - 650 m and at least 1500 m, except for a weak positive lobe near
1000 m in the Gulf Stream whose 1 standard deviation envelope grazes the z-axis.
The zero crossing the Agulhas at 650 m in the depth-averaged appears slightly deeper at
700 m in the plots of Q) averaged on isopycnals and average isopycnal depth (Fig. 5.6
and 5.7).

The greatest differences between the Gulf Stream and the Agulhas/Agulhas
Return Currents profiles are (1) the pronounced negative bump in the Gulf Stream Q,
profile near 1500 m, which is not seen in the Agulhas profiles, and (2) the definitely
negative values everywhere between 1500 and 3000 m in the Gulf Stream, where both
positive and negative values seem equally likely in the Agulhas. The origin of the
negative @), bump in the Gulf Stream is discussed in the next section.

The instability model gives growth rate peaks at three distinct frequencies for the
Gulf Stream profiles. Johns also ran the model for a synthetic profile corresponding to
the mean Gulf Stream @, profile minus its standard deviation, in which the weak

positive Qy values near 1000 m is eliminated, as it is in the Agulhas. For this Agulhas-
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like profile (except for the deep Q) values, which are still more negative than in the
Agulhas), the model gives a single broad peak in growth rate, corresponding to steering
levels anywhere between the ¢y zero crossing and 1800 m or so. The dispersion
curves for the mean Gulf Stream profile and for a one-zero-crossing profile are
reproduced here as Fig. 5.16 (Johns's Fig. 3). The effects of a deep (>1500 m) zero
crossing to positive {y values, as seen on the transect C and F Qy profiles, was not
explored by Johns. He found that changing the channel width (here 150 km), an
external parameter imposed upon the linear baroclinic model, shifted the results in
wavenumber space, otherwise having little effect.

For the Agulhas-like profile, along-stream wavelengths range from 250 km to
650 km at the broad growth rate peak of about 0.12 d-! at frequencies from 0.15 to
0.055 cpd (Fig. 5.16). Observed Return Current meander wavelengths are about
600 km (see, for example, Fig. 2.10, Agulhas Return Current paths traced from
satellite images), within the model range. What role baroclinic instability really plays in
these meanders is an open question, particularly at and in the lee of the Agulhas Plateau,
where topographic Rossby waves are possible (Harris and Bang, 1974).  Growth rate
and phase speed are quite sensitive to 4} (the ratio between bottom slope and deep
isopycnal slope), especially at lower frequencies, with decreasing bottom slope tending
to give faster growth rates and phase speeds. The dispersion curves shown here are all
for h§ =2, i.e., bottom slope twice that of deep isopycnals. This is much too small
for the Agulhas at transects C - E, and too large at transect F. The sensitivity to
bottom slope could make this type of model hard to use in the Aguthas, where bottom
slope encountered by the current varies strongly as the current meanders.

The possible effects of the Retroflection curvature should be mentioned. Rings
tend to be stabilized relative to a jet with the same cross-stream Q gradients, because an

integral number of unstable modes must fit around the ring - so long as the ring is
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GROWTH RATE (day )

PHASE SPEED (cm/s)

Fig. 5.16 — Reproduction of Johns'’s Fig. 3: dispersion diagram for the Gulf Stream
profiles shown above in Fig. 5.3, with channel width 2L = 150 km and A} = 2.
The upper panel shows growth rate kc; and the lower panel the phase speed as a
function of frequency. Solid lines correspond to the mean (X Gulf Stream profiles,
dotted lines to the left-hand (x - 5) profile, and dashed lines to the right-hand (X + s)
profile; s is the standard deviation. The dotted line, which has positive values of Q,
only down to about 600 m, is probably the most relevant to the Agulhas. The other
profiles have positive values deeper into the water column, which seems to limit the
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small enough that information can propagate around the ring in good time to quantize the
instability; a small instability on a large ring will simply see the ring as a front
(Pedlosky, 1985). In any case, the Retroflection curvature cannot affect the instability
problem in this particular way, since the Retroflection is an open, U-shaped structure,
not a closed ring.

To summarize, similar Qy profiles are evident in the Gulf Stream, the separated
Agulhas Current, and the Agulhas Return Current: the Q, profiles are all positive above
600 m or so, and mostly negative below, with comparable magnitudes through most of
the water column. These profiles meet all three necessary conditions for instability since
Qy changes sign at 600 m, with the interior condition seeming to be most important.

Johns’s numerical solutions to the linear one-dimensional baroclinic problem
using the Gulf Stream Q) and related profiles appear to be directly relevant to the
Agulhas. For a @ curve similar to the Aguthas's in structure (i.e., with a single zero
crossing at the correct level), wavelengths and phase speeds at the broad peak in fastest
growing waves match observed Return Current meander characteristics. It would be
worthwhile to check these preliminary results by redoing Johns's calculation with the
Agulhas profiles, including an examination of different deep @), values, the effect of
another Qy, zero crossing in deep water, with different bottom slopes. The best test of
the model will be a comparison with time-series observations in the Agulhas for

fluctuations corresponding to the instabilities predicted by the model.

5.7 Sloping isopycnals, local Mode Waters, and the mean baroclinic potentiai vorticity
gradient

The original motivation for computing density-averaged Q) profiles was an

interest in (/) the effect of large vertical excursions of isopycnals on the Qy, profile, and
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in (2) the relationship between the Oy, profile and water masses, in particular the low N2

Mode Waters. These Q, profiles are evidently the first computed by averaging along

isopycnals for a~ . ocean current, although plots of potential vorticity on potential

density or potential temperature surfaces are now usual (e.g. McCartney, 1982, Watts,
1983, and Hall. 1985).

The effect of vertical excursions of isopycnals is of interest because the quasi-
geostrophic scaling of the linear baroclinic model formally requires that such vertical
excursions be much less than the thermocline depth - which is clearly not the case in
Drake Passage, the Gulf Stream and the Agulhas and Agulhas Return Currents. Johns
and Wright both assumed that large isopycnal excursions did not matter much to the
instability problem. The overall similarity between the depth-averaged and density-
averaged profiles in the Agulhas and Agulhas Return Currents provides the first direct
observation confirmation that the mean Q, profile can be estimated adequately while
ignoring large isopycnal excursions. This does not, however, guarantee that other
aspects of the instability process are equally insensitive to the excursions.

The density-averaged profiles reveal an interesting relationship between the
Agulhas and Agulhas Return Currents' Q,, profiles and the Subantarctic Mode Water.
The change in the sign of Q) occurs at or below this layer: isopycnal tilts increase with
depth (Qy positive) above and in the SAMW, and then decrease with depth (Qy
negative) below it. The characteristics of the Subantarctic Mode Water core are
0,=2674120.17, s=349120.28psu, 6=109122.1C, and it is found at
depths ranging from 25C m to 800 m.

The relationship between maximum isopycnal slope and the base of the SAMW
is also evident in a plot of the pressure variation on isopycnals taken for all stations of
the 1985 survey (Fig. 5.17), which shows the largest pressure variation on the

O, = 26.9 isopycnal, across the various current and ring transect.
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The Agulhas Subtropical Mode Water is too weak (or at least it was in 1985) to
produce even an inflection in the lateral average N? profiles (Fig. 5.10 and 5.14).

The similarity between the Gulf Stream and Agulhas Qy profiles above 1200 m
or so seems attributable to the similarity of their dominant upper-level Mode Waters.
The Gulf Stream system exhibits a strong Subtropical Mode Water layer (the
18 C water) that extends to almost the same depth as the Retroflection SAMW. The
Gulf Stream STMW corresponds to the minimum observed between 100 and 600 m or
so in the Gulf Stream N2 profile (Fig. 5.3).

Deeper down in the water column, the Gulf Stream Qy, profile exhibits a negative
bump at ~1500 m. A similar feature does not appear in the Agulhas Q) profiles. The
bump corresponds to isopycnal slopes decreasing with depth, more rapidly than
anywhere else in the water column, and is found near the level of the Labrador Sea
Water, a subpolar mode water of the North Atlantic found 'flowing west and south
(from the Grand Banks] inshore of or under the Gulf Stream' (Talley and McCartney,
1982). The details of the relationship between the 0y bump and the LSW stratification
minimum are not clear, in the absence of density-averaged profiles and sections of
potential vorticity contoured on density: is the Q) bump above, at, or below the LSW at
in the Gulf Stream at 73°W? The lack of a similar Qy bump in the Agulhas profile is
perhaps due to the lack of a deep mode water.

To summarize, isopycnal slope increases with depth from the surface down to
the base of the SAMW in the Agulhas and the STMW in the Gulf Stream, while
isopycnal siepe decreases rapidly with depth in the Gulf Stream near the LSW.

Superficially, this looks contradictory. But Mode Waters, vertical minima in

stratification, influence the lateral mean Q, profile only insofar as they give rise to cross-

stream variations in stratification. The SAMW and STMW are found within the

subtropical gyres, on the warm side of the Agulhas, while the LSW is found 'inshore’
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(or under) the Guif Stream. Thus the SAMW and STMW wedges appear to push the
thermocline down on the warm side of the jet to 650 and 600 m depth respectively, so
isopycnals slopes increase with depth above and in the wedges. The least stratified LSW
on the inshore side of the the Gulf Stream pushes deep isopycnals down there, so that
isopycnal slopes across the current flatten out rapidly with depth above and in the LSW.

It would appear then, that mode water formation helps to create conditions
favorable to baroclinic instability. It would be interesting to know what the Q,, profile
of the Brazil Current looks like, given that the South Atlantic thermocline mode water is

extremely weak.

5.8  Agulhas and Agulhas Return Current instability — I. Barotropic conditions

The Agulhas and Agulhas Return Currents also satisfy the purely barotropic
condition for instability, with f§ - Uy, changing sign in the shoulders of the jet [in fact
B is, as for the baroclinic condition, negligible to 0(10-2)]. Figs. 5.18 - 5.19 show
the barotropic part, Uyy, of the mean potential vorticity gradient Q, across the Agulhas
and Agulhas Retum Currents at the sea surface; we may anticipate that the magnitude of
Uyy decays rapidly, as U, with depth. Again, Qy changes sign, opposite in sign from
the jet velocity within the jet, and same-sign in the shoulders of the jet. The largest
values are found within the jet, reaching magnitudes in excess of 2 x 10-9m-! s-! at
transect A; extreme values on the order of £1 x 10-9 m-! s-! are usual, comparable to
the extreme observed values for the baroclinic part of Qy.

The barotropic gfadicnt of Q, within the current, when added to the baroclinic
Qy gradient, shifts it such that the whole profile is shifted in the upstream direction,
decreasing magnitudes above the baroclinic zero crossing, increasing magnitudes below
it, and tending to move the zero crossing up in the water column. The smaller

barotropic gradient of Q) in the shoulders of the current has the opposite effect. The

176




barotropic contribution to (' might shift the fastest growing waves away from the

scales produced by the purely baroclinic model, particularly near the surface.

5.9  Conclusions

In this chapter, the Agulhas and Agulhas Return Currents' velocity, shear, and
potential vorticity fields, and baroclinic and barotropic instability conditions have all
been characterized, based on the March 1985 observations. Here is a brief summary of

the results.

Geostrophic velocity, Sec. 5.2

«  The Agulhas Current velocity maximum ranges from 0.8 to 1.8 m s-! at the four
transects.

« The Agulhas Return Current velocity maximum is 0.8 and 1.2 m s-! at the two
transects.

- As the Agulhas Current flows along the continental slope, the maximum velocity
and velocity shear tends to shift onshore with height, as has been observed in the
Gulf Stream and Kuroshio, instead of lining up vertically.

+ Enhanced shear at deeper levels tends to be found near tracer extrema (e.g. Red Sea
Water and North Atlantic Deep Water high salinities), suggesting deep western
boundary currents for these water masses.

Isopycnal natural coordinates, Sec. 5.3

+  As in the Gulf Stream, in the Agulhas vorticity due to vertical shear was found to be
nearly as large as vorticity due to horizontal shear. Their ratio, formally the Rossby
number € divided by the Burger number S, estimated here directly from the

observed velocity, has a value of about 1 in the Agulhas, similar to the Gulf Stream
value computed by Hall (1985) .

+ Isopycnal natural coordinates (derived in Appendix A) allow vertical shear vorticity
to be retained, combined in a single, physically meaningful, cross-stream isopycnal
shear term with the horizontal shear vorticity, without approximation beyond that
required by natural coordinates.
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Fig. 5.18 - See caption next page.
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Transect E Transect F
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Fig. 5.18 - See previous page. Agulhas Current transects A, B, and C, at the sea
surface as a function of cross stream distance: velocity (u, light gray curves, m s-1),
horizontal shear (uy, dark gray curves, 10-5 5-1), and barotropic contribution to qy (uyy,
black curves, 109 m-1s-1). Note that the largest barotropic gy is similar in magnitude to
the largest baroclinic gy (Figs. 5.4 - 5.7), implying that overall Burger number § is
similar in size to the Rossby number €. Cross-stream distance is plotted north positive,
looking westward; origin of cross-stream distance is approximately at the 15 C

temperature/200 m depth location. Velocity is plotted with west negative

(downstream). Note that gy is large and ?ositive in the current at transects A, B, and

D, and small and negative on the current's warm anticyclonic far side. Transect C is
different, with two distinct velocity maximum, due to an onshore displacement of the

warm core relative to the underlying shear. The curves persist in shape with depth and
decrease in magnitude.

Fig. 5.19 - Agulhas Return Current transects E and F, at the sea surface as a function of
cross stream distance: see Fig. 5.18 caption above. Cross-stream distance is still plotted
north positive, looking westward (which is now upstream but still negative). Both
transects show upstream values within the current, as in the Agulhas Current, and zero
crossings on the northern side of transect E) and on the southern side of transect F.
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Potential vorticity in isopycnal natural coordinates is:

q ~ (f"' Ks""‘%':;_:)%)z;

The three terms in parentheses are planetary vorticity, curvature vorticity, and cross-
stream shear along an isopycnal, weighted by the vertical gradient of a suitable tracer
A, e.g. potential temperature or potential density.

Consequences of path curvature, Sec. 5.4

The gradient wind equation was rewritten as a quadratic for a Rossby number based
on the total velocity field, €, as a function of the curvature of geostrophic
streamlines, K, curvature of parcel trajectories, K5, and a Rossby number based on
the geostrophic field, &. For the case of geostrophic and parcel trajectory curvature
equal, Fig. 5.1 shows that £; substantially underestimates & for anticyclonic
features, and overestimates € for cyclonic features - just as geostrophic velocity
underestimates total velocity in anticyclonic features, and overestimates it in cyclonic
features.

The pressure gradient and centrifugal acceleration overcome the Coriolis force in
anticyclonic meanders as |K;€,/K | increases beyond 0.25, when &, is negative
(anticyclonic), and K and K, have the same sign. Values for £ of -0.24 are
observed in the Agulhas meanders over the continental slope evident in the 15 C
temperature/200 m depth contour.

Estimates of Agulhas potential vorticity terms and balances, Sec. 5.5

Variation in Coriolis parameter f over the Retroflection latitude range is +0.08f,,
with f, the mean Coriolis parameter.

The largest cyclonic geostrophic curvature observed was -70° over 30 km (smallest
cyclonic radius of curvatuirc 25 km).

The largest anticyclonic geostrophic curvature observed was +130° over 20 km
(smallest anticyclonic radius of curvature 10 km).

The largest anticyclonic geostrophic curvature vorticity observed was -0.24f,, in the
Agulhas at the intersections of the 15 C temperature/200 m contour with
transects B and C. Anticyclonic vorticity at the sharpest tum in the contour,
southwest of the Agulhas Plateau, would be -0.78f,, if velocity there was
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0.5 m s-1 as at transects E and F. No cyclonic curvature vorticity estimates were
made, since no transect/contour intersection fell at a cyclonic meander.

The largest cyclonic isopycnal shear vorticity observed was +0.98f, , seen on the
cold side of the Agulhas Current at transect A (see Fig. 5.2).

The largest anticyclonic isopycnal shear vorticity observed was -0.17f,, seen on the
warm side of the Agulhas Current at transects A, B, and C.

The largest potential vortex stretching (also called horizontal divergence, planetary
potential vorticity variation) observed was a factor of 8 thinning of isopycnal sheets
onshore at the level of the Subtropical Mode Water.

Cross-frontal contrasts in planetary potential vorticity persist from the surface down
to ~1800 m in the Agulhas Current, and down to ~1200 m in the Agulhas Return
Current.

It appears that the observed alongstream variation of curvature vorticity can be
balanced by planetary potential vorticity variations, if parcels make excursions along
sloping isopycnals across the planetary potential vorticity gradient , of e.g. ~20 km
in the horizontal and ~100 m in the vertical.

Agulhas baroclinic instability, Sec. 5.6

The mean baroclinic potential vorticity gradient profiles across the Agulhas Current
and the Agulhas Return Current transects (Fig. 5.4 - 5.7) consistently change
sign, thereby meeting the necessary conditions for baroclinic instability.

The largest values of the isopycnal thickness gradient f2U,,/NZ are
~2 x 10-9m-! 51, two orders of magnitude larger than the planetary vorticity
gradient S.

The Agulhas and Agulhas Return Current mean baroclinic potential vorticity
gradient, Qy, profiles at all transects except B are quite similar to the mean Gulf
Stream profile (Fig. 5.3) reported by Johns (1988), with large values of the same
sign as U above ~600 m, a zero crossing at ~600 m, and values opposite in sign
from U below. The transect B profile, like many other characteristics of the current
at transect B, is wildly different from the profiles at all the other transects.

Observed Agulhas Return Current meander wavelengths of ~600 km fall within the
250 to 650 km range for fastest growing waves produced by the baroclinic
instability model for Johns's most Agulhas-like profile. This suggests that
baroclinic instability may play a role in Agulhas Current meandering.

The Aguthas (omitting transect B) and Gulf Stream profiles do differ in what appear
to be details, judging from the various profiles whose baroclinic instability
behaviors were explored by Johns. The Gulf Stream profile has a region of very
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weak positive values near 1000 m, the Agulhas does not. The Agulhas is as likely
as not to have another weak zero crossing below ~1500 m. Finally, the Gulf
Stream exhibits a lobe of enhanced Q values near 1500 m; magnitudes in the
Aguthas decay fairly uniformly below the zero crossing at ~600 m.

Formally, the quasi-geostrophic scaling of the linear baroclinic instability problem
requires that isopycnal depth variations be small compared to layer (thermocline)
depth, clearly not the case in the Agulhas, Gulf Stream, or Drake Passage
(Wright, 1980). Nevertheless, horizontally and isopycnally averaged profiles of Q,
computed across the Agulhas and Agulhas Return Currents were found to be quite
similar, thus it partly substantiates Johns' and Wright's belief that large isopycnal
slopes may be neglected, at least in estimating the Qy mean gradient.

Baroclinic potential vorticity gradient and Mode Waters, Sec. 5.7

The Q) zero crossing at ~600 m lies near the base of the North Atlantic Subtropical
Mode Water in the Gulf Stream, and near the base of the South Indian Subantarctic
Mode Water in the Agulhas. Isopycnal slopes increase with depth above ~600 m
and decrease below it, a signature of the thick Mode Water wedge in the thermocline
on the warm side of the current. This can be seen in the Agulhas by comparing
contour plots of planetary potential vorticity showing the Mode Water minimum (see
Atlas) with (i) isopycnally averaged Q) plotted as a function of potential density
(Fig. 5.6 - 5.7) and (ii) a plot of pressure variation on Retroflection isopycnals,
Fig. 5.16.

The lobe of enhanced Q) values at ~1500 m in the Gulf Stream lies near the level of
the Labrador Sea Water (LSW), one of the subpolar mode waters of the North
Atlantic; no similar feature is seen in the Agulhas. Isopycnal slopes decrease very
rapidly with depth in the LSW, a signature of the thick Mode Water wedge beneath
the thermocline on the cold side of the current.

Barotropic instability, Sec. 5.8

The barotropic potential vorticity gradient, Uyy, across the Agulhas Current and the
Agulhas Return Current transects (Fig. 5.18 - 5.19) consistently changes sign,
thereby meeting the necessary conditions for barotropic instability. The largest
values of Uy, are found near the surface, and are comparable in magnitude to the
largest values of the baroclinic potential vorticity gradient. Formally, the ratio of
Uyy to fU;;IN? is §2, where S is the Burger number NH/fL.

The barotropic part of the mean Q), gradient modifies the baroclinic gradient and thus
may modify the purely baroclinic instability solutions. Values of U, within the
current are opposite in sign from the baroclinic term f2U.,/N2 above the baroclinic
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zero crossing at ~600 m, and similar in sign below it. This tends to place the zero
crossing of the total Oy above the baroclinic zero crossing. The situation is reversed
for Uyy in the shoulders of the current: Uy, and f2U,,/N? have the same sign above,
and the opposite sign below ~600 m; O, crosses zero below ~600 m.

Analyses of other types of observations will be needed to understand the
kinematics and dynamics of the intense anticyclonic meanders found over the continental
slope and in the separated Agulhas, to test the predictions of the linear baroclinic

instability model, and to quantify eddy energy and heat fluxes out of the Retroflection.
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Chapter 6: Re-evaluation of dynamical models

6.1 Introduction

The most striking feature of the Retroflection is, of course, the fact that it
retroflects at all. We may ask of dynamical models of the Retroflection:

e why does the flow retroflect?

¢ what determines the latitude, yg, of the Retroflection's southemn extension?

e what determines the longitude, xg, of the Retroflection's western extension?

e what determines the path of the Current, s(x,y), relative to topographic
features and latitude lines?

The Current is sometimes modelled as a cohesive jet, and the Retroflection as a
simple material boundary between the S. Indian and S. Atlantic gyres. Observations
suggest, however, that rings and flow bifurcation(s) are characteristic of this region,
and that these phenomena may play an important role in the exchange of mass, heat,
salt, and vorticity between the two oceans. Again, we may ask of the models:

¢ what determines the total Agulhas Current transport which includes both the

returning interior Sverdrup transport and a locally recirculating
component?

¢ what determines the portion of the Agulhas Current transport that circulates

around the combined S. Atlantic/S. Indian subtropical gyres?

¢ what determines the size and spawning frequency of Retroflection rings?

¢ what determines the contrasts in heat, salt, and vorticity between exiting S.

Indian-to-S. Atlantic outflow and the retumning S. Atlantic-to-S. Indian
inflow?

The structure of the Agulhas Current as it flows along the continental slope of

southemn Africa is also of interest:

¢ what determines the wavelength and amplitude of observed meanders?
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What existing models of the Retroflection have to say about these questions is
discussed below. First, the classical western boundary current models are briefly
reviewed, in order to illustrate the basic dynamical balances. This leads naturally into a
discussion of the simple analytical models of the Retroflection developed by
de Ruijter (1982) and Ou and de Ruijter (1986). Parameter values used in western
boundary current models and the resulting width scales are summarized in Table 6.a.

The 1985 observations can be compared to the results of realistic numerical
models, including Lutjeharms and van Ballegooyen’s (1984) numerical solutions to an
inertial-jet model, and the one- and two-layer numerical models of de Ruijter and
Boudra (1985) and Boudra and de Ruijter (1986).

It should be noted that there is nothing particularly mysterious or complicated
(no more so than anything else in rotating fluid dynamics, anyway) about the basic,
underlying dynamics of the Retroflection itself. The asymptotic model of de Ruijter
gives a rather clear explanation. The model, which is steady and thus characterizes the
time-mean flow (but not, it must be said, the instantaneous field of any single synoptic
survey) shows that the Retroflection is a fundamentally non-linear feature. To
retroflect, the current must have momentum enough to overshoot the tip of the
boundary. Having done so, it balances increasing planetary potential vorticity with
curvature vorticity of the opposite sense. A complete explanation of the model is given

in Sec. 6.3.

6.2 Classical wesiern boundary current models

The classical models of Stommel (1948), Munk (1950), and Charney (1955),
reviewed by Pedlosky (1979) and Gill (1982), illustrate the three basic two-term
vorticity balances pussible in homogeneous steady (westem) boundary currents:

advection of planetary vorticity balanced by bottom friction, side friction, and relative
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Table 6.a — Summary of parameter values used in western boundary
current models.

Parameter | Definition | value(s) units | description
Ay 102 - 10 4|m2s-! |lateral eddy viscosity
Ay 10-4 - 10-1|m2s-! | diapycnal eddy viscosity
ar 6.4x106 |m Earth radius
fo) 7.3x 105 |si Earth rotation rate
f 28%sing 1x104 sl Coriolis parameter; @ is latitude
B 28kosqva, |1.9 x 10-11 | m-ls1 | variation of Coriolis parameter with
latitude
u; 0.01 -0.1 |ms! |[interior velocity
H 5 x103 |m water depth
R Ay \-1/2 7 . .
r (éiﬁ-) 7.0x 107 |s spin-down time due to bottom Ekman
layer (80 days)
Wa r/B 1-20 km Scale width of classical bottom-frictional
boundary current
Wy (“—#)’ 3 120-80 |km | Scale width of classical side-frictional
boundary current
7 ('1;)“2 20-70  |km | Scale width of classical inertial
boundary current
& ufa, 53 20x 104 |none |Rossby number®
E AySa? |28x106 [none |Ekman number®
Wus | @aw’’ |90 km | Scale width of side-frictional, and mixed
side-frictional/inertial boundary
currents’
Wes Wys €16 1370 lan Scale width of free-inertial
Retroflection/S. Atlantic free jet
: *
*As defined in de Ruijter (1982).
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vorticity respectively. Each balance has a characteristic scale width and implies
restrictions on where the boundary current can be located; as is usual in boundary layer
problems, the balance with the largest scale width dominates. Characteristics oi e
simple numerical models of Bryan (1963) are also briefly mentioned.

Classical bottom frictional wbc model. The vorticity balance in the bottom-
frictional western boundary current (wbc) model is between advection of planetary

vorticity and vortex stretching due to Ekman pumping at the bottom boundary layer:

Vs _ __ %y
%—»-% wE|z=_h-—r W, (6.

where S is the variation of the Coriolis parameter f with latitude; yjp is the boundary

layer streamfunction; wEI A is the vertical velocity at the top of the bottom Ekman

7=
layer; r! = ('ZEHLZ)'I 2 is the spin down time associated with the bottom Ekman layer;
A, the vertical component of the effective viscosity, and H the fluid depth.

The width scale for this balance is W, = -;-;—, which has a value of only 1 to

20 km, when we use the values given in Table 6.a. This range of current widths is
much thinner than the observed 60 to >100 km e-folding scales in the 1985 Agulhas
transect velocity fields, and much thinner than the side-frictional and inertial widths
derived below. As the balance with the largest width scale dominates dynamically, it
appears that bottom friction is relatively unimportant in the western boundary current.
Bottom-frictional boundary layer solutions are possible only on the western side
of the basin: if we introduce a boundary layer variable for the eastern wall (stretched,
shifted, and opposite in sign from x) and require that the boundary layer vanish as we
move away from the wall, we find that the eastern boundary layer solution must be

identically zero.
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A bottom-frictional wbc solution can be constructed to satisfy the boundary
condition of no flow into the western wall. It cannot also satisfy a no-slip condition
since the vorticity equation’s highest order term, horizontal friction, has been dropped, a
singular perturbation which leaves insufficient degrees of freedom to satisfy the full set
of boundary conditions.

Classical side frictional model. The vorticity balance in the side-frictional wbc
model is between advection of planetary vorticity and diffusion across the wbc of

frictional torques from the side wall:

dysg_ , Fys
By = M ad (6.2)

where Ay is the horizontal component of the effective viscosity.
The wbc scale width for this balance is Wy = ( Al )1 3 The relevant range of

B
Ayis 2x102< Ay <104 m2s-1, giving values for Wy from 20 to 80 km.! The
observed e-folding scales in the 1985 Agulhas transect velocity fields are slightly larger,
varying, as was mentioned above, from 60 to 100 km.
The side-frictional boundary layer solution is the product of an oscillating and a
decaying function, while the bottom frictional and inertial layers are strictly decaying

functions. The first zero of the oscillating part occurs at an offshore distance

2n

of
V3

Wy (about 3.6Wy). This corresponds to the distance across the current from

10ceanic Ay estimates range from 10 to 104 m2s-1 (e.g., Pedlosky, 1979). We also
must require that Wy 2 W;, in order for side-friction to appear in the dominant
dynamic balance; W; is the inertial boundary current width (see next subsection). This
requirement, with the definitions of Wy and Wj, translates into the condition

3
Ay 2 Vi =L, where u; is the interior velocity. For u; =0.01 ms-!, we require

Ap22x102m2s-1,
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the coast to the the location where the boundary-current velocity vanishes. The range of
first-zero locations corresponding to the range of Wy given above is 70 to 300 km.
This is similar to the observed first-zero locations in the Agulhas of 120 to >250 km.

The side-frictional boundary current includes a recirculating component due to
the oscillating structure, giving a total transport of about 1.2 times the interior Sverdrup
transport. The S. Indian interior transport estimated from wind-stress observations and
a model of Veronis (1973) is 5518 Sv, and 1.2 times this is 66+10 Sv. Observed
Agulhas transports range from 0.9 to 1.8 times the interior transport values. [Observed
values are 56 to 111 Sv above a reference level of 2400 dbar; beneath this level
transports are generally small (order 1 Sv) and opposite in direction. ]

Again, boundary layer solutions are possible only on the western side of the
basin; reasoning as above, it may be deduced that the interior flow itself must satisfy the
no normal flow condition on the eastem boundary.

Classical inertial boundary current model. The vorticity balance in the inertial
wbc model is between advection of planetary vorticity and relative vorticity in the
current:

P
ui“éfza * Byg= 0 (6.3)

where ; is the zonal (on/offshore) component of the interior velocity. The wbc scale
width for this balance is W, = (%I/Z, which has a value of 20 to 70 kmm when we

use 0.01 to 0.1 m s-! for the interior velocity. These values overlap the low end of the
observed range of e-folding scales (60 to >100 km) seen in the 1985 Agulhas transect
velocity fields.
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The boundary layer in this case need not be on the western side of the basin.
Rather, the inertial boundary current can decay away from either an the eastern or
western wall provided that the interior velocity is westward. This solution cannot
satisfy a no-slip boundary condition for the same reason the bottom-frictional wbc could
not: lateral friction has been omitted.

Mixed inertial/side frictional wbc. It is likely that both the inertial and side-
frictional terms contribute significantly, given that the scale widths, an indication of their
relative importance, are comparable. Both terms contribute desirable properties to the
solution: inertia gives a scale width that is independent of the poorly-known effective
viscosity coefficients, and as the numerical models discussed later show, it also allows
the current path to exhibit characteristics seen in nature that are impossible in a purely
frictional model, including path curvature and overshooting the latitude where the
Sverdrup interior transport vanishes. Frictional processes of some kind must also play
an important role in the wbc system somewhere, dissipating the boundary current's
relative vorticity so that it can merge with the quiet ocean interior; friction is also
necessary to dissipate the energy input from wind stress. In combination the terms give
damped Rossby waves where the wbc rejoins the interior, and total transport in excess

of the interior wind-driven transport (again their ratio is about 1.2, for %:1.3; Bryan,

1963) as seen in the purely side-frictional solution is retained by the mixed solution.

6.3 Agulhas Retroflection asymptotic models part I: de Ruijter’s model

The most obvious difference between the classical wbc models and the Agulhas
Retroflection region is the fact that the African continent ends in the middle of the
anticyclonic subtropical wind-stress curl zone. The asymptotic models of
de Ruijter (1982) address the question of a western boundary terminating in mid-gyre.

He reformulates the classical linear, side-frictional, and mixed inertial/side-frictional
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models mentioned above in spherical geometry with a partition midway across the basin
ending in mid-gyre. A cartoon of the S. Indian/S. Atlantic circulation is given in
Fig. 6.1. The elements of the cartoon are discussed in detail in the next section.
Sketches relevant to de Ruijter’s models are shown in Figs. 6.2 - 6.3.

Side-frictional Retroflection model. The essential result of the classical side-
frictional wbc model reformulation is that the side-frictional wbc scale width Wyg is
itself the largest scale found anywhere near the boundary . This model does not
produce a larger scale width over which a Retroflection-type feature can occur.

The value of Wys is 90 km, using de Ruijter's value for lateral eddy viscosity
Ay of 8.4 x 103 m2s-1. This is within the range of e-folding scales observed in the

1985 Agulhas transect velocity fields (60 to >100 km). The scale width Wyg is
defined by Ways =(%A” )”3, where a, is the radius of the Earth and Q is the

rotation frequency.2 This differs a bit from the classical side-frictional wbc scale width
Wy = (4-;- )"3, as a consequence of de Ruijter's non-dimensionalizing the problem

in spherical geometry. The ratio Wv!,lf; =(2 costp)'m is ~0.85 at mid-latitudes; recall

@is the latitude andﬁ:znz:’“’.

The circulation pattern produced by this model is shown in Fig. 6.2
(de Ruijter's Fig. 3.c). The side-frictional wbcs of the S. Indian and S. Atlantic
Oceans, plus a free viscous shear layer extending across the S. Atlantic at the partition
tip latitude, passively close the Sverdrup interior circulation. The free viscous layer and
the matching region where it joins onto the wbc have the same scale width as the wbc
itself, that is, Wys.

2The definition can also be written Wys = a, EI’3, with the Ekman number E given
AH

o

r
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Fig. 6.2 — First approximation of transport stream function for linear side-fictional

model (de Ruijter’s Fig. 3c.). Wind-stress curl is sin (9¢ + n/4), approximating
observed winds. The zeroes of the wind-stress curl are located at 25° and 45°S (marked
by straight lines across both basins), and the maximum at 35°S. The partition tip is also
located at 35°S.




N

Fig. 6.3 — Boundary layers emerging from the mixed inertial-side frictional
Retroflection model (de Ruijter’s Fig. 5.). Labels refer to:

(b) mixed inertial/frictional boundary layer.

(c) free inertial boundary layer.

(d) free inertial frictional sub-boundary layer.

(e) inertial tip region and its westem zonal extension.
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There are three circulation regimes: an inner South Atlantic gyre, an inner
South Indian gyre, and an outer super-gyre that encircles both inner gyres. The
transport of the combined outer gyre, T¢, is just the integral of the Sverdrup interior
transport across the basin from the partition longitude to the zastem boundary, along the
latitude of the viscous shear layer offshore edge as it flows west south of the partition
tip. The transport of the respective inner gyres, as a function of latitude, is given by the
integral of the Sverdrup interior transport between the eastern and western boundaries
of South Atlantic and South Indian Oceans, minus the outer gyre transport - to which
the small recirculating transport associated with the oscillatory character of the side-
frictional boundary current may be added as before.

Mixed inertial/side-frictional Retroflection model. The second part of
de Ruijter’s analysis includes both lateral friction and inertia. The assumption that
neither of these balances overshadows the other implies that Wy ~ Wy, i.e., that the
scale width of the mixed wbc is Wys ~ aWys, where o is an order-one scaling
factor; Wy is defined above.

A fundamentally new free-inertial regime appears in a circular region of radius
W rs surrounding the tip of the partition and in a 2Wps-wide band centered on the
partition tip latitude that extends across the South Atlantic Ocean to its western
boundary (Fig. 6.3, de Ruijter's Fig. 5). The vorticity balance in the free-inertial
regime is between planetary and relative vorticity (from de Rujter’s Eq. B7), which
includes jet axis curvature. Any poleward component of fluid motion in the free inertial
jet is accompanied by increased cyclonic planetary vorticity and increased anticyclonic
relative vorticity, including axis curvature to the east.

Retroflection scale radius. The scale of Wgs is a,£,1/3 (again, from de Rujter's

Eq. B7) or equivalently Wysé), /6, where &, is the basin-scale Rossby number i
r
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The value of €,1/3 is 5.8 x 10-2 when €, = 2.0 x 10-4 and u4; = 0.093 m s-I.

Now u; is the scale of the maximum interior zonal velocity, which itself depends upon
the wind-stress curl maximum cur! Tmgy.

De Ruijter adjusts the Retroflection scale radius to the local interior zonal

velocity in the vicinity of the partition tip by taking the cube root of the product of Wgs
curl 3( Yp)

and the ratio where curl 1(yp) is the zonally-averaged wind stress curl at the

curl Tmax

partition tip latitude. The adjusted value, Wgg', is 0.9 = 1.0Wgg, estimating from
maps of Sverdrup transport computed from wind stress curl (Hellerman and
Rosenstein, 1983). The maximum Sverdrup transport is found very near the partition
tip latitude in the July map and >200 km to the south in the January map [the spatial
resolution is limited by the averaging of the wind data over 2° x 2° (220 km north-
south x 180 km east-west) squares].

The value of Wgs is 370 km using de Ruijter’s values: 90 km for Wy (see
above); 2.0 x 10-4 for the Rossby number &,; and @ = 1. The scale Wgs’ after
adjusting for the wind-stress curl is 340 -~ 370 km. The model thus predicts fairly
intense Current and Return Current flow within 340 - 370 km of the partition tip.

Apparent western boundary tip latitude. There are three circulation regimes, as
for the purely side-frictional model. Now, however, the Retroflection free-inertial jet
regime extends the apparent western boundary southward, to ygr = yp + Wgs', where
Yp is the partition tip latitude. The super-gyre transport integral now must be taken
further south at yg. This decreases the super-gyre transport, if the Sverdrup interior
transport decreases to the south as is the case south of the partition tip in the
South Indian Ocean, and increases the inner gyre transports. Further increases in the
inner gyre transports may arise from additional recirculation associated with the inertial

terms.
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6.4 Agulhas Retroflection asymptotic models part Il: an adjustment to de Ruijter »
model and comparison with observations

So far I have followed de Ruijter’s arguments. A further adjustment to Wpgs'
may be rationalized as follows. The observed Retroflection includes a recirculating

component that nearly doubles its transport above the maximum interior value. This

1/3

: ” ’ u - - . -
suggests the adjustment Wpgs” = Wps (E!:) . where u, is an interior velocity scale
4

that includes the recirculating component. The observed range of the ratio of Agulhas
transport and maximum Sverdrup interior transport is 0.9 ~ 1.8, which gives a range
of values for Wgs” of 330 - 440 km. Asymptotic model parameters and
adjustments are summarized in Table 6.b.

Adjusting Wgs' in this way implies a prediction: that the Retroflection is largest
when the transport is greatest, assuming that transport of the Agulhas does indeed vary.
This adjustment also implies that changes in the recirculation strength are self-
reinforcing, so long as the Retroflection southern boundary is north of the zero wind-
stress curl latitude. As the recirculation increases, the Retroflection expands to the
south and incorporates more South Indian anticyclonic streamlines into the
South Indian inner gyre, which increases the energy supply to the recirculation, and
presumably tends to spin it up further. The dynamics of the recirculating transport
component itself are, obviously, sidestepped here.

Comparison with observed Retroflection radius. If we take Wpg” to represent
the e-folding scale of the meridional velocity, then the Return current axis should be
south of the partition tip latitude by 1.1Wpgs” (Fig. 6.4). The 1985 observations of
the Agulhas and Agulhas Retun Current axis (represented by the 15 C/200 m contour)
show it lying within about 500 km of the tip of the Agulhas Bank. This is just above
the 1.1Wgs"” range of 360 - 480 km.
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Table 6.b = Summary of parameter values used in asymptotic
Retroflection models and comparison with observation.

Parameter | Definition value(s) units | description
Wgs Wys &~ 16 370 km Scale width of free-inertial regime
j’ curl T(yp) dx
c 0.8-1.0 |none ratio of wind-stress curls
J'curl Tmax dx
Whgs’ cB3Wgs 340 - 370 |km de Ruijter's Retroflection scale
width/radius
Uy u; 0.9-1.8 |[none ratio of recirculating and Sverdrup
interior velocities
Was' (%)”3%5' 330 - 440 |km | Retroflection scale width with
recirculation adjustment
Ye 68 deg change in Agulhas heading over
which meridional velocity falls to
¢! of alongstream velocity
R Wrs'Isin v, 360 - 480 |km Retroflection radius
Rops 500 km observed Retroflection radius
Yp 37°S lat observed partition tip latitude
YR 41.5° lat observed Retroflection southem

boundary latitude

199




YR —

Fig. 6.4 - Sketch (not to scale; see below) showing e-folding scale of
meridional component of velocity. The Retroflection scale width, Wg",
radius of the Retroflection, R, current heading, vy, partition tip latitude, Ypr
and southern boundary of the Retroflection , yg = Yp - R, are shown; the
velocity u is imagined to have constant magnitude lu,. When the heading

is Y, degrees east of south, the meridional component has decreased to el

times its Yp value. (The angle v, used here is about 45 degrees, to leave

room for labels; the correct value is 68 degrees. The correct ratio between
Wgs" and R is 0.93.)
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Note that the partition tip latitude de Ruijter used (35°S) corresponds. to the
southernmost point on the African shoreline. But the continental shelf, i.e. the Aguthas
Bank, is 200 km wide here. Thus we have used 37°S, the southernmost latitude of the
continental slope (specifically, the 400 - 4000 m isobath range) along which the
Agulhas flows. Zonally integrated Sverdrup transport computed from wind-stress curl
varies by at least 20% between 35° and 37°S.

South Indian to South Atlantic transport. The Agulhas Current probably
bifurcates to some degree, as yet poorly known, in the Retroflection. One branch tums
west into the S. Atlantic ocean, and the other east into the S. Indian as the Return
Current. First, we note that the transport of the Agulhas Current at yp, T4(yp), is given
by an integral of the Sverdrup interior transport across the South Indian basin at the

latitude yp, plus the locally recirculating transport T

XE

qur! T(Yp)
Ta(yp) = | ——dx + T (6.4)
P pB

xR

where xg and xg are the longitudes of the Retroflection and Australia at y,. The
maximum South Indian interior transport at latitudes near y, is 63 Sv, which gives us
a maximum value for the integral. The maximum observed Agulhas geostrophic
transport at the 1985 transects relative to 2400 dbar is 98 Sv, which gives a value for
T4, Evidently the recirculating transport T; was at least 35 Sv.

Now the transport of the super-gyre streamlines, T, representing water
transported from the South Indian to the South Atlantic, is just the interior transport
integrated across the South Indian basin at the latitude yg of the southem boundary of

the Retroflection. This is given by an integral analogous to the one appearing in
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Eq. (6.4) evaluated at yg, the Retroflection southern boundary. The Retroflection
southern boundary is related to the partition tip latitude y, by yg = yp + Wgs".

The value of T¢ estimated from the wind field at yg is about 30 Sv, with a
standard error of at least 8 Sv, again using Hellerman and Rosenstein’s (1983) maps
of Sverdrup transport computed from wind stress curl. It must be noted that this value
comes from the southemmost edge of their maps where errors are largest.

The observed values of interbasin transport are:

+ 13.5 Sv (relative to 1500 dbar, 1983 observation),

+ 19.2 Sv (relative to the bottom, 1984 observation, possible incomplete
transect),

+ 6.7 Sv (relative to 1500 dbar, 1985 observation),

+ 5.0 Sv (relative to 2400 dbar, same 1985 observation), and

» 11.8 Sv (relative to deepest common levels, same 1985 observation).

These values are consistently smaller than the 30 + 8 Sv inferred from the wind
observations. The interbasin transport of warm water is discussed further in
Chapter 8.

Return Current transport. The transport of the Return Current that flows

directly eastward into the S. Indian Ocean in the Agulhas Return Current is given by

T;=[Tq-Tc] (6.5)

where T, is the transport of the Agulhas Current at yp,, and Tc is the net flow past the
tip of Africa from the Indian Ocean into the Atlantic Ocean.

If the maximum observed Agulhas Current transport T4 is 98 Sv, and the
maximum observed Indian to Atlantic flow Tcis 5 = 19 Sv, then the direct Agulhas
Return Current transport T is evidently at most 93 Sv. There are two transects of the
Return Current in the 1985 survey with transports of 54 and 94 Sv, but observed

Return Current transports cannot compared directly to T; , however, since there is no

202




way of knowing where the Return Current 'ends,’ since eastward transport persists to
the south in the Antarctic Circumpolar Current (which includes the super-gyre
streamlines).

Southern limit of the super-gyre. Where is the southemnmost streamline of the
combined S. Atlantic/S. Indian super-gyre? Geostrophic transport calculations across
the Agulhas and Agulhas Return Currents show that the net east-west transport is less
than 5 Sv, if the integration is taken from the African coast out to 110 km beyond the
Return Current 15 C/200 m contour. This implies that the outer streamline of the
super-gyre is at about this location. The smallest paired Agulhas and Return Current
transports have values of 54 and 56 Sv. These values agree very well (if fortuitously)
with the maximum transport value of 63 Sv expected from the retuming interior

transport alone, with no recirculating component.

6.5  Role of coastline curvature

The general question of an inertial jet separating from a curving coastline was
considered by Ou and de Ruijter (1986). They used a l%layer inertial jet model
bounded offshore by a free streamline to show that the separation point from the coast,
where the interface between the two layers surfaces, was a function of the current's
transport, the coastline curvature, and the Coriolis parameter.

Increasing transport decreases the interface depth at the coast, h;. For a given
transport, increasing cyclonic coastline curvature and/or increasing f also decreases h;,
(Fig. 6.5). Again, once h; reaches zero, the interface breaks the surface, and the
current separates from the coast. After separation, the jet follows a path dictated by the
vorticity balance between path curvature vorticity and planetary vorticity (the 'separation

curve' on Fig. 6.5).
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This model clearly illustrates, as did the asymptotic models, the balance of
curvature vorticity and the planetary vorticity in a free western boundary current
extension. The calculated path for a free jet is shown in Fig. 6.6, with the interface at
the 10 C isotherm, a dimensional upper layer transport of 60 Sv, and zero path
curvature at 35°S. These parameter values and the corresponding calculated path
compare well to the observed Agulhas path during 1983 survey (see Fig. 3.14).

The transport value and the zero path curvature location for 1985 would be hard
to chose, since transport varies from 26 Sv at transect B to 73 at transect D! (relative to
1500 m, as for the 1983 observations). Since the separation point is at a higher latitude
in 1985 than in 1983, the logic of the model would demand a smaller transport in
1985 - a point with which we can neither agree nor argue. Ou and de Ruijter found
that the Agulhas went around the tip of Africa without separating (something which has
never been observed) for a transport that is just 10% less than 69 Sv, the 1983 value
used in generating Fig. 6.5. If the current does not separate, the utter lack of friction in
the model becomes a rather serious deficiency - given that a purely inertial jet is just as
happy on an eastern boundary as on a westem boundary (Pedlosky, 1979).

This model gives a clear picture of the underlying physics of the Retroflection,
but in the absence of time-dependence, transport variation alongstream, and friction, it

cannot be compared to the observations in detail.

6.6  Topographic inertial jet model

The topographic inertial jet model originally formulated by Warren (1963)
includes topographic stretching to the vorticity balance, in addition to the relative and
planetary vorticity terms retained in the jet model discussed in the previous section.
Again, there is no friction, so in some cases the current does not separate from the

continental slope even after it turns into an eastern boundary. This model was
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Fig. 6.5 — Scaled interface depth at the coast as a function of Corioli- parimeter and
Jjet curvature. Reproduction of Fig. 5, Ou and de Ruijter (1986).
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Fig. 6.6 — Agulhas Current path, calculated from l%layer model, for a transport of
60 Sv, with zero jet curvature at 33°S
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subsequently applied to the Agulhas Current and Retumn Current by Darbyshire (1972)
and then by Lutjeharms and van Ballegooyen (1984), who added realistic topography.

The parameters of the topographic model are the initial depth or latitude
upstream, the integrated volume mass and momentum transport, and bottom velocity,
which together imply a scale for the vertical shear. This allows a somewhat bewildering
array of paths to be generated (Fig. 6.7), displaying strong sensitivity to the model
parameters.

The model itself has several restrictions that make it difficult to take the
dependence of the path on the model parameters too seriously in the Agulhas. Mass
transport is constant alongstream and there is no time-dependence, as for Ou and de
Ruijter’s path/coastline curvature model. Momentum, bottom velocity, and vertical
structure are also held fixed alongstream. It must be further assumed that the velocity
direction does not vary much from top to bottom, so that vortex stretching
accompanying flow across isobaths at the bottom boundary can be transmitted to the
water column above. And again, in the absence of friction, a purely inertial eastern
boundary current can arise. All of these restrictions seem to fit rather badly on the
Agulhas: along-stream mass transport can increase and decrease by a factor of two or
s0, rings spawned out of the Retroflection loop, and velocity seems to veer strongly
with depth.

Certainly this model does no worse than the simpler Ou and de Ruijter model.
But the greater complication, restrictions, and sensitivity to poorly known or highly

variable parameters make it rather unattractive.
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6.7  Eddy-resolving numerical models

A series of eddy-resolving numerical model experiments have been performed
by de Ruijter and Boudra (1985), Boudra and de Ruijter (1986), and very recently by
Boudra and Chassignet (1988) and Chassignet and Boudra (1988).

Each of these investigations models a double gyre basin with a partition ending
in mid-anticyclonic-gyre. The models have progressed from one layer with a north-
south partition, to three layers with a north-south partition, to models with a more
realistic northeast-southwest oriented boundary. The basin is still rather small (see
Fig. 6.8), and the bottom flat, but the results are encouraging and seem in harmony
with our still rather limited observational experience in this area.

The dynamics of the models thus now approaches those of the ocean in
complexity. Yet certain robust results stand out. First, increasing the nonlinearity of
the model upper layer decreases the amount of flow into the Atlantic around the tip of
Africa (Fig. 6.8), as in the asymptotic model. Second, recirculating Agulhas transport
in excess of the Sverdrup interior flow occurs as non-linearity increases. Third, rings
and partial/multiple retroflections are seen to form (Fig. 6.9). Finally, the models are
highly time-dependent even in the presence of steady wind forcing. Clearly these
models are fairly successful in replicating known ocean behaviors.

The greatest deficiency of the models would seem to be in representing the
Antarctic Circumpolar Current. Maps of the Southern Ocean strongly suggest
interaction between the ACC and the Agulhas Return Current, yet in some of the
numerical models the southern subpolar gyre (in the absence of a true circumpolar

current) can be shut down by anticyclonic vorticity input from the retroflection.
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Fig. 6.8 — Agulhas Retroflection time-averaged, vertically integrated streamfunction
from a three layer eddy-resolving model. Upper layer depth decreases and Rossby
number increases going from panels labelled (a) to (d) to (g). Top panel has the
African coastline and the 1985 15 C temperature/200 m contour overlaid. Reproduced
from Boudra and de Ruijter (1986).
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de Ruijter (1986).
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6.8  Conclusions

A number of questions were posed at the beginning of this chapter, conceming
the dynamics of observed phenomena in the Agulhas and Agulhas Retumn Currents.
The models developed so far answer only some of these questions.

Most importantly, the basic dynamics of the Retroflection itself can be clearly
understood from the asymptotic models, and from the very simple and rather elegant
coastline/jet curvature model. As the current overshoots the tip of the continent, it
crosses latitude lines and must balance increasing cyclonic planetary vorticity with
anticyclonic curvature vorticity. The latitude to which the current overshoots is well
estimated from these simple models. The longitude to which the current extends to the
west, by contrast, is not constrained by planetary vorticity variation and thus might be
expected to be, and in fact is, much more variable.

The path of the current relative to topographic features remains an open
question, given the rather unsatisfying character of solutions to the topographic inertial
jet problem with realistic topography, and the as yet flat bottom in the numerical model
experiments.

Total Agulhas transport in excess of the wind-driven value is observed in the
more non-linear numerical experiments. The amount of Agulhas transport that turns
into the South Atlantic decreases with increasing non-linearity, in the asymptotic model
and the numerical models.

Retroflection rings and partial/multiple retroflections play a role only in the
numerical experiments; in the coastline/jet curvature and topographic inertial jet models,
such features and in fact any time-dependence explicitly violates the model assumptions.

As to the vorticity, heat, and salt contrasts between Indian-to-Atlantic flow and
the return flow, the models, not surprisingly, have little yet to offer. For this we must

stick to observations for a while still.
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Chapter 7: Characteristics of a cold-core ring
within the Retroflection loop

7.1 Introduction

No cold-core ring had ever been observed within the Agulhas Retroflection loop
before the March 1985 survey, that is, within the area bounded by the Agulhas and
Agulhas Return Currents on the north, west, and south, and by the Aguthas Plateau on
the east. The 1985 Ayuli.as Retroflection cold ring appears centered near 38S, 24E, on
the northwest flank of the Agulhas Plateau, between the Agulhas and Agulhas Return
Currents. The ring can be seen in maps of temperature on the 200 m and 500 m depth
surfaces (Fig. 1.7 and 1.8), and in contoured sections of the ring included in the Atlas!.
The ring is not visible in the CTD/O; surface temperature field (Fig. 1.6), in the satellite
infrared image, nor in the XBT survey of the 15 C/200 m contour.

The ring was 2130 km in diameter, defining this as the distance between the
observed 15 C temperature/200 m depth locations at the ring edges. The ring had
swiface velocities <1.2 m s-1 and transported about 65 Sv (see Fig. 2.12), both
relative to 2400 dbar (relative to deepest common levels, surface velocities were
<1.3 m s-1 and transport was about 80 Sv). The Rossby number, estimated from the
gradient wind relation, may be as high as ~0.5. These estimates, derived from the
CTD/O; transect across the ring, are lower bounds because the orientation of the

transect relative to the ring is entirely unknown; the transect may have passed through

1 A single northwest-to-southeast Africa/Agulhas/cold ring/Return Current section for
each contoured property can be constructed by concatenating sections from Agulhas
transect B, the cold ring transect, and the Return Current transect F. The Retumn
Current transect must first inverted left-to-right (north-south), since it is displayed
looking east while the Agulhas and cold ring are displayed looking west. Note that
there is a 10 day gap between the two northemn-most stations of transect F [transect A,
the ring transect, and the northernmost station of transect F were taken 12-13 March,
while the rest of transect F was taken 22-23 March].
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ring center, or just grazed its outer edge. Isopycnals at mid-depth do dome up in the
ring to depths shallower than those observed at the southemn ends of the Retumn Current
transects; for example, 0, ~ 27.0 kg m-3 domes up to ~400 m in the ring, but only to
~450 m at the southem ends of Retum Current transects E and F. Assuming that the
cold ring did form from a meander of the Return Current, the ring isotherm topography
suggests that the cold ring transect came close to the center of the ring, and that the ring
has the full strength of the current from which it was formed.
Several questions about this unusual feature will be addressed here:

« Evidence is presented that the feature is indeed a cold ring, not just a
northward meander of the Return Current. This includes a discussion of
why the ring lacks a signature in the sea surface temperature field
(Sec. 7.2).

+ The origin of the water within the ring is discussed (Sec. 7.3).

« The Retroflection cold ring is compared to cold rings observed farther east in
the South Indian ocean (Sec. 7.4).

« The Retroflection cold ring's contribution to the heat/salt/vorticity balances
of the South Indian and Circumpolar Oceans and the Retroflection are
roughly estimated (Sec. 7.5).

Results are summarized in Sec. 7.6.

7.2 Cold ring or northward meander?

Could the observations be interpreted as showing a northward meander of the
Return Current instead of a cold ring? Suppose that the ‘cold ring' CTD/O; transect
(stations 261-266, taken 12-13 March) in fact crossed a northward meander of the

Return Current. Suppose also that the meander propagated east after the transect was
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completed, such that the meander's western side was sampled again, by the last CTD/O,
Return Current transect (labelled 'F' in the Atlas), and by the part of the
temperature/depth contour survey that is located between the contour's last sharp tum at
428, 22E and the contour's downstream end.

The western side of the Return Current meander, in this interpretation, was
located on 12 March near 38S, 23E ('cold ring' transect), and on 22 March near 39S,
26E (intersection of transect F and the temperature/depth survey). This implies a
meander propagation rate comparable in magnitude, and opposite in sign, to other
propagation rates estimated from this data set (cf. Chapter 2): 300 km eastward over
the 9 days between (i) the 'cold ring' transect and (ii) Transect F and the
temperature/depth survey, or 0.4 ms-1. If the cold feature were a meander
propagating in the manner described, the data set would be seriously contaminated with
spatial/temporal aliasing, and plan-view maps (like Figs. 1.6-8) contoured as if the data
were synoptic would be quite misieading.2

Fortunately, however, there are two pieces of evidence that have not yet been
mentioned which preclude the Return Current meander interpretation and support the
closed cold ring interpretation. First, ring tracer anomalies and transport can also be
seen at the three stations 288-290 which lie on the northern end of Return Current
transect E (the Atlas contoured sections end at sta. 289, since the flow reverses at station
pair 288-9). These three stations were taken on 24 March, just two days after the
conclusion of the temperature/depth survey, and a day before the first daily satellite
image. The transport at the station pairs 288-289 and 289-290 is about 0.6 of the ring

transport inferred from the main cold ring transect taken 12-13 March. Either

2Thanks to Jerry Miller, Rosenstiel School of Marine Science, University of Miami, for
his seminar question that contained this altemative interpretation.
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(i) stas. 288-289 were located further from ring center than the main cold ring transect
or (ii) the ring flow field weakened rapidly during the 9 days between the two surveys.
There is no observational information available to decide this point.

The second piece of evidence for the cold ring interpretation is provided by the
surface temperature field. If the cold feature were a meander of the Return Current,
surface temperature along a line across the meander would be expected to drop where
the Return Current enters the meander and rise again where the Current exits it. In fact,
along the main cold ring transect surface temperature rises almost monotonically from
northwest to southeast, from 20 to 22 C (Fig. 1.6). Across the Return Current at
transects E and F, by contrast, surface temperature drops by about 2 C, from
20 to 18 C. This suggests that the cold core ring is indeed an isolated feature, whose
initial cold surface temperature anomaly has been erased by heat flux from the
atmosphere.

How long has the ring been an isolated feature? We may place a lower bound
on the ring's age by estimating how long it took for its initial isolated cold surface
temperature anomaly (of 18 C compared to the local summer air temperature) to
disappear. The decay of the initial air-sea temperature difference AT can be estimated
using the simple mixed layer model discussed in Chapter 2 (Eq. 2.3 and 2.4).
Replacing the advective temperature change ugby the time rate of change :%lr-and
holding the air temperature fixed gives AT = ATye 7 with AT, the initial air-sea
temperature difference. The time it takes AT, to decay to e~ AT, in this model is
T = pCph/G, where, as in Chapter 2, p is density, Cp, is specific heat of seawater, A is
a mixed layer depth of 50 m, and G is an empirical coefficient relating AT and heat flux

per unit area.
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With, as in Chapter 2,

p = 1000 kgm3

Cp = 4 x 103 kg1 K-
h = 50 m

G = 40 Wm2K-!

the value of 7 is 5 x 106s ~ 60 days. This is probably an upper bound on 7, reduced
mixed layer depth with heating to, say, 10 m, would reduce 7 to 12 days. The 60 day
value is consistent with observations of Gulf Stream cold rings, which usually lose any
cold surface temperature anomaly over a summer (Ring Group, 1981). So we may
estimate very roughly that the ring's age was at least 10-60 days at the time of the main
cold ring transect. An inspection of two-week composite satellite infrared images for
the two month period preceding the March 1985 survey did not find signs of the cold
ring's formation, either because (i) the ring formed at during an earlier period, (iii) the
formation event was obscured by clouds, (iv) the formation event was obscured by the
infrared image compositing and declouding procedure, or (ii) the ring formed remotely
and propagated into the Retroflection after losing its surface temperature signal. 3

Upper bounds on the ring's age can be derived only by analogy to Gulf Stream
cold rings, which can persist for a year or more before being reabsorbed by the Stream
(Ring Group, 1981). It seems likely that a cold ring within the Retroflection has a
higher likelihood than a Gulf Stream ring of being reabsorbed quickly, given that the
ring is closely surrounded on almost all sides by the Agulhas and Agulhas Return
Currents. Some but not all Gulf Stream cold rings can still be identified in satellite

images by warm streamers advected with the ring's velocity field, even after the ring’s

3Satellite Group, Rosenstiel School of Marine Science, University of Miami
(E. Chassignet, R. Evans, D. Olson), pers. comm. They generously showed me their
two-week-average declouded images formed from the 4.4 km x 4.4 km Global Area
Coverage NOAA TIROS-N infrared data.
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cold surface anomaly has been lost (Ring Group, 1981). The 1985 Agulhas cold ring
does not exhibit streamers in the satellite image shown here.
Thus we may conclude that the cold feature is indeed a cold ring, not a

northward meander of the Return Current, for two reasons:

+ The cold feature was observed near the same location in two CTD/O>
transects, one taken before and the other after the temperature/depth contour
survey. This precludes the interpretation that the cold feature was a meander
that moved east after the first CTD/O; transect to the Return Current position
seen in the temperature/depth contour survey and Retum Current transect F.

+ The cold feature lacks the cold sea surface temperature anomaly (~18 C) that
would be expected within a northward meander of the Return Current,
exhibiting instead a nearly monotonic, relatively warm surface temperature
gradient (20 C to 22 C northwest to southeast) along the main cold ring
transect. A simple model suggests that the cold sea surface temperature
anomaly (relative to an atmospheric temperature assumed constant) of a
newly-formed cold ring decays to e-1 of its initial value over 10-60 days.
This suggests that the Retroflection cold ring pinched off from the Retumn
Current at least 10-60 days before the main cold ring transect.

7.3 Ring water characteristics and origins

The cold ring core at upper levels is similar to water found on the south side of
the Retum Current as would be expected in a feature formed from a cyclonic Return
Current meander. The ring's potential temperature/salinity (6/s) and potential
temperature/oxygen (& 0?) values above o, ~ 26.7 are similar to values observed on
the Return Current's south side (Fig. 7.1 and 7.2) and distinctly different from those
observed in the Retroflection interior (Fig. 7.3 and 7.4). The origin of nearly all the

ring core water below 0y ~ 26.7 cannot be determined from the available data, since
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most ring core values, the Retroflection interior, and the Retumn Current south side share

the same, if noisy, &s and &#0; curves beneath this level.4

The ring's potential density/planetary potential vorticity (o/g)values above
O, ~ 26.7 are also similar to values observed on the Return Current 's south side and
distinct from Retroflection interior values, taking into account atmospheric sources of
in the seasonal thermocline; 'similar’ § differ by a factor of 2 or less, and 'distinct’
values by more than a factor of 2 (see Atlas 0/g sections, cold ring transect, Agulhas
transect A, and Retum Current transects E and F; same stations as Figs. 7.1 - 7.4).
The three 077 fields coalesce below g, ~ 26.7. Relative vorticity is at most ~0.4 times
the planetary potential vorticity, with the largest values found near the sea surface in the
shoulders of the Agulhas jet (see Chapter 5), so its contribution to potential vorticity
anomalies is considerably smaller than the factor of 2 planetary potential vorticity
anomalies considered here.

There is one layer beneath g, ~ 26.7 in the ring core with characteristics
markedly different from both the Retroflection interior nor the Return Current south
side. A layer of extraordinarily salty, low oxygen water was observed at the center
station of the ring (station 263), within the density range 26.8 > g, > 27.2 kg m-3 at
depths of 300 <z <500 m and 6 < 8 < 10 C (Figs. 7.1 - 7.4 and Atlas cold ring

sections).

4The Retroflection interior water is characterized here by stations 270-273 at transect A.
Transect A crosses the Agulhas farthest upstream, before the Agulhas bifurcates, and
before it interacts with the cold core ring. Retroflection interior stations further
downstream are all contaminated to some degree by cold, fresh water that has been
entrained into the Agulhas transport from the cold ring, the South Atlantic, or the
Circumpolar Ocean.

The ring core is characterized by stations are 262-264 from the main ring transect;
stations 289-290 from the northern end of transect F graze the ring edge.

The coid side of the Return Current is is characterized by stations 282-283 on the
cold side of transect F, and 284-285 on the cold side of transect E. -
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The layer's salt anomaly is significant despite its smallness (Fig. 7.5). Relative
to the Retroflection region's saltiest/warmest volumetrically important thermocline
water, the South Indian Central Water (SICW), the anomaly is at most +0.10 psu on
constant isopycnal surfaces; the SICW is characterized by a tight, stable &s relation at
thermocline temperatures (about 8 - 13 C; see Fig. 7.3). The anomalous cold ring
layer is as salty as any water observed at comparable densities during the entire 1985
and 1983 Retroflection surveys. The 6/s values at the salty cold ring core station
(station 262) and at other salty stations in the 26.8 > 0, > 27.2 density range of the
1985 survey (stations 277 and 278 in Fig. 7.5) may be compared to the entire 1983
Knorr CTD data set (Gordon et al., 1987), shown in Fig. 7.7. These two stations
show Red Sea Water remnants entering the Retroflection region on the continental slope
inshore of the Agulhas Current axis.

The layer's oxygen anomaly is striking (Fig. 7.6).5 The layer oxygen values are
0.5 mi I-! less than al] the 1983 Retroflection observations at comparable potential
temperatures (Fig. 7.8). They are as much as -0.75 ml I-! lower than the lowest
values observed during the 1985 survey south of the Return Current or in the
Retroflection interior. Lower oxygen was observed in 1985 at these temperatures on
the inshore side of the Cape Town Eddy (Fig. 7.6). The Eddy is just south of
St. Helena Bay, the southemmost area of the Benguela coastal upwelling regime, in
which oxygen-deprived water is produced at the local bottom density on the continental
shelf (0, ~ 26.8 kg m-3 in St. Helena) as a result of the upwelling-enhanced
biological activity and o;tygen utilization rates (shown in Fig. 7.9, reproduced from
Chapman and Shannon, 1985). Oxygen values less than 4.0 ml 1-! were found on the
Cape Town Eddy transect within 100 km of the shelf break, at stations 207, 208,

5The CTD/O; measurements of low oxygen in the layer are confirmed by a titrated
value of 4.14 mi I'! in a water sample taken at ~400 dbar, 7.8 C, on station 263.
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and 211, 100 <z <400 m depth and 8.4 < 6 < 9.5 C potential temperatures.
This low-oxygen water has &s values very close to those of the SICW, however, so we
may rule it out as the source of the anomalous water in the cold ring - not to mention
the fact that nothing else in the regional circulation suggests that water mass exchange
between the Benguela and cold ring regimes could have occurred.

Evidently, then, the cold ring’s anomalously salty, oxygen-poor layer is either
(i) the product of water mass modification within the ring, (ii) an anomalously low-
oxygen blob from the inshore side of the Agulhas, or (iii) a combination of the two.

First we consider the layer's &/s anomaly. The 6/s anomaly overlays almost
perfectly the Red Sea Water (RSW) remnant observed at stations 277 and 278. There
are several possibilities for how the remnant could have been incorporated into the ring
core. The remnant could have been advected with the first Agulhas retroflection branch
along the ring edge. Alternatively, the remnant could have come in contact with the
ring if the ring, or the Return Current meander from which it was formed, cut off the
Agulhas Current flow as far inshore as the RSW influence. Once the remnant was
brought in contact with the ring, it could then have moved into the ring core as an
intrusion, or during ring propagation if core water was imperfectly carried along with
the ring. The only other plausible source for the layer's &s anomaly is modification of
SICW, e.g. SICW cooled ~0.2 C at constant salinity. The mechanism for such
modification is not obvious.

Next we consider the layer's #0; anomaly. Aging Gulf Stream cold core rings
have been observed to exixibit decreasing oxygen concentrations in the upper 150 m due
to biological activity (Ring Group, 1981). Ring core oxygen concentrations decrease
with time at deeper levels due to exchange between the ring core and lower-oxygen
Sargasso and Gulf Stream water. The Agulhas ring's anomalous layer occurs at

300 < z < 500 m, a bit deeper than the level at which biological activity predominates

226




in Gulif Stream cold rings. However, unlike the Gulf Stream rings, the water outside
the Agulhas cold ring core is all higher in oxygen (with the RSW remnant having the
lowest values at +0.4 ml I-! relative to the anomalous layer), so the lower oxygen
cannot be attributed entirely to exchange. Perhaps in the center of the Agulhas ring a
surface convergent secondary circulation similar to that observed in Gulf Stream cold
rings concentrates and downwells biological material, depleting oxygen there, most
likely from the already low (<4.7 ml I-1) values of an RSW remnant. Nothing more
can be said with the available observations.

7.4 Comparison with Mozambique ridge cold rings

Cold rings have been observed southwest of Madagascar and east of the
Mozambique ridge (Griindlingh, [985). They seem to be distinctly different in structure
from the Retroflection cold ring. All Mozambique ridge ring isotherms (above 1800
dbar) are 100-400 m deeper than isotherms in the Retroflection cold ring, at
corresponding positions across the rings. Near the surface, isotherms <18 C in the
Mozambique ridge ring and $20 C in the Agulhas ring are nearly flat.

The largest of the Mozambique ridge rings are larger in diameter than the
Retroflection cold ring. The Mozambique ridge rings range from 80 to 240 km in
diameter (based on the 10 C temperature/650 m depth contour). Quantitative
comparison of the ring diameters is not straightforward since Retroflection/Mozambique
ring isotherms have very different depth ranges, but, judging subjectively, the
Retroflection cold ring has a diameter of 130 km based upon the 15C
temperature/200 m depth contour (assuming that the Retroflection ring transect does
nearly bisect the ring).

The maximum geostrophic surface velocities of Mozambique ridge rings are

<0.6 m s-! and their geostrophic transports range from 20-50 Sv, both relative to

227




1800 dbar. The Retroflection cold ring though smaller has higher surface velocity and

transport of ~1.0 m s-1 and ~55 Sv relative to 1800 dbar, respectively.6

7.5 Cold ring contribution to Retroflection dynamical and tracer balances

The contribution of cold rings to the Retroflection dynamical and tracer balances,
is a function of the rings' volume, V, the strength of the rings' anomalies per unit
volume, 8,, the frequency with which the rings are formed, 27/, and the ring water's
ultimate fate, which may be designated by r, the ratio of ring fluid absorbed by the

Retroflection to total ring fluid introduced. The scale rate d-g-t"- at which rings deposit a,

in an oceanic region is given by:

2moVé,

‘%ﬁ ~ " (7.1)

Since only V and 8, can be estimated from the 1985 cold ring transect, the ring
contribution to South Indian/Circumpolar balances can be reported only in dynamical or
tracer units per ring formed, i.e., 6,V, leaving the question of the frequency of ring

. 2; . . . . .
formation — and the efficiency of ring water absorption r to later investigators.
3

The volume and other anomalies are estimated here in terms of the 10 C
isotherm depth, following the practice of Olson and Evans (1986) in their analysis of
Agulhas warm rings. They used this isotherm to represent the interface in a two-layer
approximation of ring structure, having found maximum correlation between isotherm

depth and dynamic height at this temperature in the Levitus (1982) atlas data taken from

6Transport linearly interpolated from values (i) relative to 1500 dbar (50 Sv) and 2400
dbar (65 Sv). The transport relative to the bottom and (mistakeniy) to 2400 dbar
reported elsewhere omitted station 261, which ended near 3300 dbar, ~2000 dbar
above the bottom. Inclusion of this station does not significantly change the transport
relative to any level.
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the 10° x 10° square centered on the Retroflection and the warm ring region west of it.

The 10 C isotherm depth/dynamic height (d, h) relation within this box is

d,dynm=C, + (0.0018 £0.0001) A, m

with C, a constant. Since 1dyn m=10 m2s-2, the reduced gravity g’ is
0.018 m s-2.

The 10 C isotherm in the Agulhas cold ring is represented here by a circularly
symmetric Gaussian, & = h, + A eT/R2_ This is the simplest function that can be easily
fit’ to the observed 10 C depths at stations 261-266 (Fig. 7.10), and will serve as an
objective, reproducible way to evaluate integral properties of the ring. The fit produces
the values h, =750 m for the 10 C depth as the radius r goes to infinity,
A = -500 m for the amplitude (the depth anomaly for a cold ring is negative), and
R =93 km for the half-width. The internal Rossby radius of deformation is
Lg = -8}—h-¢~ 42 km, and the Rossby number is € = l—'R8-~ 0.45, using these
values.

The upper layer volume anomaly is (Fig. 7.11):

oo

V= [2rrh(r)- holdr = nR2A = 14 x 1012 m3 (1.2)
o

i.e., the same as a cylinder of radius R and height A. The upper layer volume within a

radius c is just V, (c) ---.n:czho -1VI. It is 6.8 x 1012 m3 within r = R.

TThe nonlinear fitting routine mrgmin from Numerical Recipes in C (Press et al., 1988)
was used.
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Fig. 7-10 _ Depth of 10 C isotherm in the cold core ring. Cross are
observed depths at stations 261 — 266 (shown with station 266 farthest on
the left), and curve is Gaussian fitted to the observed depths. Note that the
far-field is not specified with observations, but results from the near-field
fit. The x-axis distance has an offset of about 500 km compared to the
distance on the Atlas cold ring transect.
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Cold ring: upper layer volume anomaly is ~B
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upper layer core volume is C + D.
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The ring's available potential energy per unit volume, i.e., the potential energy

anomaly due to the departure of h from h,, is APE =£§g—[ h(r) - hy ]. Integrating over

the upper layer volume anomaly gives:

fdv APE fzn r [h(r) - ho)dr = (7.3)
'wR2A2
=’M§_‘L= 61 x 10157

again, the same as in a cylinder of radius R and height A.
The ring's kinetic energy per unit volume due to baroclinic velocity in the upper
layer is KEp = é- pvy2, where the baroclinic velocity, vp, obeys the gradient wind

v Oh .. . :
relation P fvp =g e which is just a quadratic for vp. The integral of KEy over

the upper layer volume is:
oo
jdV KBy = [xr h(r) pvp? dr (1.4)
o
where
we= (\/{, k) ) )

Integrating this numerically gives a value of 8.3 x 1015 J for the ring's integrated KEj.
Note that we specified the KEy/APE ratio a priori by specifying a Gaussian for A.
Velocity and thus kinetic energy, unlike volume and available potential energy, are
sensitive to the details of the shape of h. Errors in the KEy estimate are thus likely to be
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larger than errors in the other estimates. Also, of course, any barotropic contribution to
the kinetic energy is missing entirely.

The ring's potential vorticity anomaly is

h
I - f+&p
4 ’ r o
PVA = %—f b ;,% %[ °1 (7.6)

neglecting barotropic contributions to the relative vorticity {p = l;h + a%t, and holding

f fixed. The factor -g— is included for consistency with the planetary potential vorticity

2
estimator% used in the Atlas contoured sections (and elsewhere in the literature, e.g.

McCartney, 1982). The ring's total potential vorticity anomaly is obtained by (i) using
Eq. 7.5 to compute vy, and from it {p, and then (ii) integrating Eq. 7.6 numerically
over the upper layer volume, as was done for the kinetic energy. This gives an
integrated PVA value of 2.8 x 103 m?s-1.

The estimates just discussed quantify the ring's dynamical contribution to the
Retroflection. The ring's upper layer (6 >10 C) tracer anomalies, relative to

Retroflection interior tracer values, are confined to a volume of approximately

Vu(R) ~ nR2 (h, - 1Al) ~ 6.8 x 1012 m3 (7.7)

Upper layer salt and heat anomalies on isopycnals are at most +1 C and -0.3 psu
relative to Retroflection interior water. The total ring upper-layer anomalies are thus at
most 0.3 x 1020J and -2.1 x 1012 kg salt. These would be the net transfers into the
Retroflection if the upper layer volume influx associated with the cold ring were

balanced by a withdrawal of Retroflection interior water, in the cores of Retroflection

233




warm rings, for example. The cold ring’s lower layer (6<10 C) tracer anomalies are
negligible (Fig. 7.3-4 and section 7.3).

Table 7.a summarizes the Agulhas cold ring's, and other ring's, characteristics.
Estimates of total energy and vorticity supplied by the wind per year to the South Indian

Ocean are also shown.

7.6 Conclusions

The 1985 Agulhas Retroflection cold ring, the first such feature observed within
the Retroflection loop, was found on the northwest flank of the Agulhas Plateau. This
ring is evidently formed from a northward meander of the Retum Current that pinched
off at least month or two before the 1985 survey, judging from the time it would take to
warm the ring's cold surface cap to observed temperatures. The ring's geostrophic field
is fully as strong as the Return Current. Subsurface upper layer water in the ring is
similar to that found immediately to the south of the Return Current, and is distinctly
different from water found in the Retroflection interior. The only exception is a salty,
low-oxygen blob evidently entrained from the inshore side of the Agulhas where Red
Sea Water remnants with the appropriate characteristics are observed. The blob's
oxygen values are lower than any other water observed during the 1983 and 1985
surveys, except for unrelated shelf bottom water from St. Helena Bay at the southern
end of the Benguela upwelling regime. This suggests enhanced oxygen utilization
within the ring.

The cold ring’s upper layer volume anomaly magnitude and its potential
energy anomaly are comparable in magnitude to values of these quantities computed for
the warm Agulhas rings observed in 1983. The cold ring is about three times as
nonlinear as the Agulhas warm rings, and half as nonlinear as a representative Gulf

Stream cold ring. The anticyclonic wind stress curl potential vorticity input to the entire
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S. Indian subtropical gyre can be balanced by the potential vorticity flux associated if
the South Indian and Southern Oceans exchanged approximately 25 warm ring/cold

ring pairs each year.
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Chapter 8: Interbasin exchange and the 1983 and 1985 Cape Town Eddies

8.1  Introduction

Flow from the Indian to the South Atlantic Ocean around the tip of Africa is
suggested by some of the dynamical models just discussed. Taft (1963) and
Gordon (1985, 1986) saw such interbasin exchange as a link in a thermohaline
overturning cell of global proportions, supplying warm thermocline water from the
Indian Ocean to the North Atlantic for conversion into cold deep water. Gordon went
on to suggest that changes in the global cell might have remote effects, e.g., if the
interbasin exchange rate changed, the deep water formation rate might also change.

The global scale overtumning cell proposed by Gordon, based on simple heat and
mass budgets, balances the export of North Atlantic Deep Water (10 to 20 Sv) from the
Atlantic across 30 S with an import of South Indian Ocean thermocline water around
the southem tip of Africa, with a mean temperature in the range 8 to 154 C.

The warmest water in Drake Passage is 8 C, as Gordon notes. Thus, only
water warmer than 8 C must come from the Indian Ocean, in sufficient quantities to
raise the mean temperature of the imported water into the 8 to 15.4 C range. Note that
there is nothing in the model to distinguish between steady and time-dependent
interbasin exchange.

The discussion that follows, then, addresses the question: how much
thermocline (warmer than 8 C) water enters the Atlantic Ocean from the Indian Ocean
around the tip of Africa and across 30 S? We examine the observational evidence from
the 1985 and previous surveys, compute the thermocline water transport, and note
sources of uncertainty. The relevant results of a recent inverse model of the South

Atlantic sector of the Southermn Ocean (Rintoul, 1988) are also discussed.
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The heat flux across Retroflection longitudes was discussed previously in
Secs. 4.7 and 4.8.

8.2 Transport obse: vations west of the tip of Africa

Hydrographic sections were collected in 1983, in 1984, and again in 1985,
starting at the tip of Africa and extending several hundred kilometers to the southwest.
The 1983 and 1985 sections observed warm eddies situated near the continent. The
1983 warm eddy was dubbed the 'Cape Town Eddy' by Gordon et al. (1987). The
1985 Cape Town Eddy (as it came to be called) is not the same ring as in 1983: drifters
sowed into the 1983 CTE showed that it move slowly off into the Atlantic Ocean interior
(Fig. 2 of Olson and Evans, 1986). Contoured sections across both rings are included
in the Atlas.

The net northward transport across the 1983 ring was 13.5 Sv relative to
1500 dbar. In 1984, Whitworth and Nowlin (1987) found a northward flow of
19.2 Sv 200 km southwest of Cape Town at the last station pair of a short
hydrographic line. This area is, however, densely populated with anticyclonic eddies
and strong retumn flow immediately to the south cannot be ruled out. The net northward
transport across the 1985 ring was 6.5 Sv relative to 1500 dbar.

The second zero of the transport field was used as the offshore edge of the ring
trarsport in the 1983 and 1985 calculations. This must be regarded as a questionable
procedure, especially when there observations of the transport field beyond the second
transport zero are limited. This was the case in 1983, when the section was terminated
based on evidence of isopycnals descending over 45 km (XBTs 28 and 29, and
CTD 8). The accumulated transport vs. along-transect distance for the 1983 and 1985
rings is plotted in Fig. 8.1. The 1985 transect, which continued well past the boundary

of the 1985 ring, found weak southward transport on its offshore side sufficient to
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Fig. 8.1 — 1983 and 1985 Cape Town Eddy transects: transport integrated offshore
and bottom depth vs. along-transect distance; looking northwest. Distance in km,
transport in Sv. Transects oriented with 15 C/200 m contours on inshore side of
eddies lined up at x = 0.
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reduce the 1985 net imbalance to one-half the 1983 value. There is no way of knowing
if a similar situation also obtained in 1983.

Now, the net transport across the 1983 and 1985 rings above 15 bar is
almost twice the size of the net transport of water warmer than § C. Water this warm is
found only above 350 - 450 dbar at the edges of the 1983 and 1985 rings, and above
550 - 850 dbar at their centers. The ratio of ring transport above 8 C to total ring
transport is about 0.5, with both transports computed relative to 1500 dbar. The 1983,
1984, and 1985 net northward transports of >8 C water are 6.8 Sv, 9.6 Sv, and
3.3 Sv respectively, again relative to 1500 dbar, if the net transports are reduced to 0.5
of their original values.

Further, slightly more >8 C water flows south than north, since a net descent of
isotherms offshore (which is just the thermal wind signature of the net northward
transport) is superimposed on the symmetric ring structure. The net transport values
should be further reduced by 0.5 Sv (roughly) to 6.3 Sv in 1983 and 2.8 Sv in 1985,
having estimated that (i) the 8 C isotherm descends 200 m across the rings, (ii) the
average azimuthal velocity above 8 C is 0.20 m s-1, and (iii) the ring radii are on the
order of 150 km.

Thus the observed net Indian-to-Atlantic transports of thermocline water,
warmer than 8 C, were 6.3, 9.6, and 2.8 Sv in 1983, 1984, and 1985, keeping in
mind that the 1984 value is questionable. These transports are 0.63, 0.96, and 0.28 of
the lowest NADW export rate of 10 Sv, and 0.32, 0.48, and 0.14 of the highest rate
export rate (20 Sv). Dis;counting the 1984 observation, then, the proportion of the
imported transport coming from the Indian thermocline ranges 0.14 to 0.63 of the total
import. The remainder of the imported water is colder than 8 C, and may be supplied

either from the Indian Ocean or from Drake Passage.
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Transports relative to 2400 dbar! and relative to the bottom/deepest common
levels were also examined for the the 1985 eddy. The net transport above a 2400 dbar
reference level is 5.0 Sv. This is slightly less than the net transport above a 1500 dbar
reference level. Net transport above deepest common reference levels is 12.7 Sv.
Northward bottom velocities over the continental slope would, obviously, increase the
net northward transport.

Interestingly, on the inshore side of the 1985 Cape Town Eddy, very low
oxygen values are found (see Atlas contoured section of oxygen for this transect). This
low oxygen water would seem to originate to the north at shelf bottom densities in
St. Helena Bay (Chapman and Shannon, 1985; see Fig. 7.9, which is reproduced
from this paper and related discussion in Sec. 7.3). There is some possibility of
oxygen depleted water forming on the Agulhas Bank; none was seen in the 1983 or
198S surveys.

Current meter measurements to the southwest of Africa show substantial
northwestward transport, (Luyten, pers. comm), but as the moored array is incoherent
careful analysis will be required to determine how well the moored measurements

represent the entire flow field.

8.3 Indian to Atlantic warm water transport in an inverse model of the South Atlantic
sector of the Southern Ocean

The 'warm water path' proposed by Gordon was tested by Rintoul (1988)
using an inverse model. The inverse model solutions for the likely range of Atlantic
heat flux values and overtuming cell transports balanced the Atlantic NADW export
across 30 S with an import of equal parts thermocline (>8 C, 0, < 26.8 or so) and

intermediate/bottom water.

IReference level used for Agulhas transport calculation, located above the North Atlantic
Deep Water salinity maximum.
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But the thermocline water is not drawn from the Indian Ocean in the inverse
model solutions: all of the thermocline water (3 - 9 Sv) sent north across 30 S, plus
some for export to the Indian Ocean (2 - 6 Sv), is manufactured in the South Atlantic
subtropical gyre south of 32 S!

The model's thermohaline cell increases its heat flux by increasing the
overturning cell transport, not by increasing the proportion of thermocline water in the
overturning cell. This led Rintoul to suggest that Gordon's model overspecified the
thermohaline cell by imposing both the Atlantic heat flux and the overturning cell
transport.?

Rintoul also tested the warm water path directly by imposing on the model a
13 Sv net northward transport into the South Atlantic of water warmer than 8 C. The
resulting inverse solution relative to the standard model displayed numerous striking
changes, including nearly reversed transport in the Subantarctic Front of the Antarctic
Circumpolar Current.

Rintoul’s choice of 13 Sv for the northward transport of >8 C water was based
on Gordon's observation of 13.5 Sv net transport across the 1983 Cape Town Eddy.
But, as was discussed above, this value actually pertains to the net transport above

1500 dbar, while the net transport of >8 C water is only about 6.3 Sv.

8.4 Warm water transport by drifting rings

Warm rings spawned by the Agulhas Retroflection drift into the South Atlantic,
bringing within themselves a volume of warm water. Each ring contains on the order of
15 x 1012 m3 water warmer than 10 C (Olson and Evans, 1986), relative to the 10 C

isotherm depth in the far field.

Z It must be noted that the hydrographic data used in the inverse model have obvious
deficiencies, especially near the southem tip of Africa, and one has to wonder how the
inverse solution structure is affected by these deficiencies.
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For an NADW export of 10 to 20 Sv to be entirely balanced by the anomalous
warrmn water in ring cores, 20 to 40 rings would have to be produced. The actual
number of rings per year on average is unknown, but something on the order of 6 to 12
per year (one every month or two) is suggested by satellite infrared image series (the
western limit of the Retroflection retreats eastward about this often, see Fig. 2.11; also
Olson and Evans, pers. comm).

This works out to a mean eddy warm water transport on the order of 3 to 6 Sv.
Net thermocline transport around the tip of Africa measured in 1983 and 1985 was,
recall, 6.3 and 2.8 Sv respectively. Thus the rings and the steady flow may make
comparable contributions to the Indian-to-Atlantic warm water flow.

One must also ask how the Cape Town Eddies interact with the the northward
transport along the western side of the African tip. The 1983 and 1985 net transport
along the tip's western side was, after all, measured when a warm ring was present.

What is the transport when there is no ring present?

8.5 Conclusions

In 1983, 1984, and 1985 respectively, 6.3, 9.6 (nominally), and 2.8 Sv of
water warmer than 8 C flowed from the Indian into the Atlantic Ocean around the
southern tip of Africa, based on transport computed relative to 1500 dbar. These
values are consistently smaller than the 10 to 20 Sv value proposed by Gordon (1986)
to balance the export of NADW. The net transport is decreased slightly in 1985 when =
deeper reference level juét above the North Atlantic Deep Water salinity maximum is
used; it would be increased if bottom velocities on the slope were northward. Very low
oxygen water on the inshore side of the 1985 eddy would seem to have come from the

north, though an Agulhas Bank origin may be possible.
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An inverse model (Rintoul, 1988) of the South Atlantic sector of the Southem
Ocean indicates that the North Atlantic Deep Water overturning cell transport and the
Atlantic air-sea heat flux are linked, and that Gordon’s warm water path may have
resulted from specifying both of these variables, at incompatible levels. The inverse
model shows the South Atlantic Southern Ocean sector producing warm (>10 C) water
for export to both the South Atlantic and the Indian Oceans. Rintou! tested the warm
water path directly, using Gordon’s value of 13 Sv for the warm water flow, and found
that severely anomalous inverse solutions resulted.

Warm water transported within Retroflection warm rings was estimated to
amount to 3 to 6 Sv, using a volume anomaly of 15 x 1012 m3 and a formation
frequency of 6 to 12 rings per year. The effect of the Cape Town Eddies on flow near

the African coast is as yet unknown.
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Chapter 9: Summary and conclusions

9.1  Summary and conclusions

The 1985 hydrographic survey of the Agulhas Retroflection strongly confirms
the impression that the Retroflection is a complicated, highly energetic region.

The main current axis (represented by a temperature/depth contour of 15 C at
200 m) meandered strongly across isobaths on the continental slope, parted from the
slope at its southernmost point, and then retroflected (tured around to the east) in a
series of sharp turns, not in a large smooth loop. The Agulhas Return Current flowed
directly over the heart of the relatively shallow Agulhas Plateau, contrary to all previous
observations.

About a third of the current transport retroflected far ups' -‘-am from the main
current axis' retroflection. This first, partial, retroflection occurred just upstream of a
meander of the Agulhas into extremely shallow water. Just offshore of the shallow
meander a large cold core ring was found within the retroflection current loop, giving
the appearance of its having played some role in displacing the current up onto the
slope. Downstream of the first retroflection, transport increased again, creating a
somewhat isolated anticyclonic cell there. The existence of two Retroflection branches
means that transport decreased and increased rapidly alongstream in both the Agulhas
and Agulhas Return Currents. The current's superficial warm core, visible in satellite
infrared images of sea surface temperature, followed the first retroflection branch. A
strong temperature gradlent also visible in the images, followed the second retroflection
branch. Surface temperature changes along the main current axis are too large by an
order of magnitude to be caused by direct heat loss to the atmosphere.

The maximum transport of the Agulhas Current (95 Sv relative to 2400 dbar,

111 Sv relative to deepest common levels) is significantly more than the maximum
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interior Sverdrup transport (63 Sv), indicating that much of the Agulhas Current is
recirculating locally. The Agulhas transport cannot be reduced to the interior transport
value simply by moving the reference level for the geostrophic transport calculation
without causing water obviously of South Indian origin to flow back towards its source.

A strong front in tracer (salt, oxygen, potential vorticity) strengths was found in
the upper water (above 300 m) of the Agulhas and Agulhas Retum Currents, persisting
in attenuated form down through intermediate levels.

The thick wedge of the Subantarctic Mode Water potential vorticity minimum is
found everywhere within the Retroflection and makes a major contribution to the

thermocline structure, with the most strongly sloping isopycnals located at its base.
The most salty Red Sea Water and North Atlantic Deep Water are found in thin
ribbons near enhanced geostrophic shear, suggesting deep westemn boyndary currents

for these water masses. The RSW ribbon is visible on the northeastem-most Agulhas
Current transects, and the NADW ribbon on the southwesternmost Agulhas transect,
and beneath a large warm eddy in the South Atlantic just west of the African tip.

The steady westward hieat flux across a longitude line east of the tip of Africa,
due to exchange of warm Agulhas upper level water flowing west with cooler Return
Current water flowing east, was roughly estimated from the hydrography. This heat
flux was found to be equivalent to the heat lost from the sea surface, at Retroflection air-
sea heat flux values (~-100 W m2), over a square area of 250 — 550 km on a side.
Each Sv (106 m3) of transport that returns to the east as North Atlantic Deep Water
instead of upper layer v‘vater increases the westward heat transport, by an amount
equivalent to another 300 x 300 km square of Retroflection air-sea heat flux.

The geostrophic velocity maxima at transects across the currents ranged from

0.7to 1.8 ms-!. These values represent the maximum average velocity between
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hydrogrephic stations, so it is not surprising that they are considerably less than the
maximum speed yet observed, using drifters, of 2.60 m s-! (Griindlingh, 1977).

Relative vorticity as large as the planetary vorticity f was found on the cyclonic
side of the Agulhas Current in the form of cross-stream isopycnal shear. Anticyclonic
curvature vorticity, estimated from the geostrophic fields, was found to be one-quarter
of f in the Agulhas Current meanders on the slope, the upper limit on anticyclonic
curvature vorticity in gradient wind balance.

A natural coordinate, isopycnal form of potential vorticity was found to be
usable in the Agulhas. Potential vorticity due to vertical velocity shear is not negligible
and is retained in the natural isopycnal potential vorticity formulation.

Cross-stream gradients in vortex tube length (stratification) are as large as a
factor of 8 in the upper levels of the Agulhas, suggesting that observed along-stream
curvature vorticity variations can be balanced by vortex stretching from small parcel
displacements cross-stream. These large cross-stream stratification gradients form a
dynamical barrier to large cross-stream displacements. They are associated with large
salt and oxygen gradients in the upper water, consistent with their role in inhibiting free
cross-stream parcel exchange.

The separated Agulhas Current and Agulhas Return Current meet the necessary
conditions for both barotropic and baroclinic instability, separately and when combined
together; the contribution of the planetary vorticity gradient 8 is negligible to order 10-2.

The velocity, mean baroclinic and barotropic potential vorticity gradients, etc.,
profiles, of both the AMM Current once it separates from the coast and of the Agulhas
Return Current, are basically similar to Gulf Stream profiles. The mean baroclinic
potential vorticity gradient Q) profiles of both currents have positive (i.e., same sign as
downstream velocity) lobes down to ~600 m and negative values below that level. The

600 m zero crossing is found at the base of the local thermocline Mode Waters of the
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iwo systems: isopycnal slope increases with depth down to 600 m and then decreases
with depth. Profiles of Q) and other quantities averaged on horizontal and isopycnal
surfaces in the Agulhas and Agulhas Return Currents are very similar, despite the large
depth variation on isopycnals.

Since the Gulf Stream and Agulhas profiles are so similar, the results of a linear
baroclinic model for the Gulf Stream (Johns, 1988) appear to be almost directly
applicable to the Agulhas — in particular a version of the model using a mean baroclinic
potential vorticity gradient profile @, which departs from the Gulf Stream profile in
some of the same ways the Agulhas Q0 profile does. Observed Agulhas Return
Current meander wavelengths fall in the range of wavelengths associated with the
model's fastest growing waves, suggesting that baroclinic instability may play a role in
their generation. A run of the model with the Agulhas profiles, and comparison to time-
series data in the Agulhas, will be needed to take these speculations further.

Dynamical models of the Retroflection exhibit many of the observed features and
help elucidate their underlying dynamics. The simplest models (de Ruijter, 1982, and
Ou and de Ruijter, 1986) show that the Retroflection is a fundamentally non-linear
feature, and that the current must have momentum enough to overshoot the tip of the
boundary in order to retroflect - otherwise it can flow in a zonal jet across to South
America. The overshooting jet balances increasing planetary potential vorticity with
curvature vorticity of the opposite sense. The southermn penetration latitude of the
Retroflection is well estimated by these models. Topographically controlled inertial jet
models (Darbyshire, 1 9}2 and Lutjeharms and van Ballegooyen, 1984) can produce
realistic-looking current paths, but are very sensitive to initial conditions on the path.
Finally, eddy-resolving numerical models in a small basin (de Ruijter and Boudra,

1985 and Boudra and de Ruijter, 1986) confirm the impression that increasing the non-
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linearity intensifies the time-average retroflection, while producing reasonable eddy
formation and shedding events and baroclinic structure.

The cold core ring observed within the Retroflection loop has mass transport
(65 Sv relative to 2400 m, 80 relative to deepest common levels) fully as large as the
Return Current from which it was probably formed. The ring is invisible ‘n the satellite
infrared image and in the hydrographic surface temperature field due to a warm surface
cap, similar to caps observed on Gulf Stream cold rings. The Agulhas ring cap was
estimated to have formed over a month or two, judging from a simple model of air/sea
heat flux. The ring's subsurface upper layer water is similar to that found south of the
Return Current, except for a low oxygen blob near the center. The blob may have been
entrained from the warm, low-oxygen, inshore side of the Agulhas, and/or lost oxygen
to enhanced biological activity within the ring. Volume and potential energy anomalies
are similar to those of some warm Agulhas rings observed in 1983. The cold ring is
smaller and spins faster than the warm rings, making it about three times as nonlinear.

The interbasin exchange of mass from the Indian to the Atlantic Ocean around
the tip of Africa estimated from the wind field is 30 £ 8 Sv, while the observed
geostrophic transport is between 5 and 20 Sv, relative to reference levels ranging from
1500 m to deepest common levels, for transects taken in three consecutive years.

The interbasin exchange of warm water, warmer than any found in Drake
P;ssage, was 6.3 Sv in 1983 and 2.8 Sv in 1985, both computed across warm eddies
in the Atlantic just west of the African tip, and both based on transport relative to
1500 m. These amounts .of warm water transport balance just one-tenth to one-half of
the 10 - 30 Sv of North Atlantic Deep Water exported from the Atlantic Ocean.
Further, these warm water transport values are significantly less than the 13 Sv
previously estimated from the 1983 observations and tested in an inverse model of the

Atlantic sector of the Southem Ocean.
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9.2 Future work

An explosively growing data base, both theoretical and observational, created
and accompanied by improving measurement and analysis tools and techniques, is
creating the promise of an exciting and productive next decade in physical
oceanography.

In the Agulhas Retroflection region:

» Attall, incoherent current meter mooring array deployed for two years in the
Agulhas and recovered in 1987 will provide a first look at the current's
vertical structure and instabilities, including eddy heat fluxes.

« The sharp tumns in the Agulhas and Agulhas Return Current's path seem
unique in the world ocean. What is their structure in three dimensions? How
do they evolve and propagate? Are they preferred sites for cross-frontal
flow? How much energy and mass is extracted at the turns?

+ It has been suggested that the Agulhas has seasonal cycles in transport,
giving rise to seasonal variations in interbasin exchange of mass and warm
water. Until the variability of transport and interbasin exchange is
understood, extracting mean values for these quantities from isolated
observations will continue to be questionable. What part of the variation is
seasonal, and what part the product of hydrodynamic instability?
Characterizing the variability will require a combination of satellite

measurements, in situ measurements, and numerical experimentation.

The 1985 hydrographic survey and the results of this thesis provide, it is hoped, a solid

characterization of the Retroflection upon which future work can be built.
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ATLAS OF CONTOURED SECTIONS

This Atlas contains contoured sections of water mass properties and velocity at
transects across the Agulhas Current, the Agulhas Return Current, and Retroflection
rings. The station data is taken from the 1985 and 1983 Agulhas Retroflection surveys.

Four 1985 Agulhas Current transects, labelled A - D, and two 1985 Agulhas
Return Current transects, labelled E - F, are included. The 1985 transect station
locations are shown in Fig. 3.1, and information about station depth, etc., is given in
Table 3.a.

Two ring transects from the 1985 survey are also included. One crosses a warm
ring located west of Cape Town, labelled the '1985 Cape Town Eddy.' The other
crosses a cold ring, located on the northwestern flank of the Agulhas Plateau within the
Retroflection loop, labelled the ‘cold core eddy.” The locations of the ring stations are
shown in Fig. 1.3.

The 1983 Agulhas Current transect, labelled 'Gordon Agulhas,’ and the 1983
Cape Town Eddy transect, labelled ‘Gordon CT eddy', are also included. The locations
of the 1983 Agulhas Retroflection survey stations (Gordon et al., 1987) are shown in
Fig. 3.13. The 1983 transects were contoured only down to 1500 dbar, even though
all stations of the 1983 Agulhas Current transect, and most stations of the 1983 CTE
transect, go to the bottom (most of the remaining 1983 stations do end at 1500 dbar,
Fig. 3.14).

All transects have station locations and numbers marked at the top. Stations on
transect C marked with an 'S’ end at intermediate depths (see Fig. 1.3 for values). The
dark line at the bottom connects the station echo sounding depths, converted to
pressure, on sections where pressure is the vertical coordinate. The dark line at the top

is the surface density (plus the density increment corresponding to the filter half-width
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for planetary potential vorticity, §) on sections with potential density as the vertical
coordinate, and the dark line at the bottom is the bottom density (minus the same
adjustment as at the surface for §). Note that caps over near-surface extrema may be
missing if the surface potential density is less than o, = 24.8, the minimum shown.

All current transects are oriented looking downstream, with the cold side of the
current on the right. The cross-stream distance is marked in kilometers at the bottom.
The origin is located at the 15 C temperature/200 m depth location, the current axis
indicator that was followed during the XBT contour survey (see Ch. 2). Distance is
positive on the warm, anticyclonic side of the current.

The warm eddy sections are oriented looking northwest, with the African
continental slope on the right. The cold eddy section is oriented looking southwest,
with the Agulhas Plateau on the left. Distance origin and sign is arbitrary for the ring
transects.

Each 1985 contoured section bears a tiny map showing the transect location.

Variables (1) through (5) listed below are contoured in cross-stream vs. pressure
coordinates. Variables (3) through (7) are contoured in cross-stream vs. potential

density coordinates:

(1) potential temperature, 6, in degrees Celsius,
(2) potential density referenced to 0, 1000, and 3000 dbar: o, 0;, and 0}

respectively, where

O'pr =p (S, 6 (S. T, /N pr), pr) - 1000.0 kg m-3.

(3) salinity, s, in practical salinity units,
(4) oxygen, 0, inml 1],
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(5) geostrophic velocity! relative to deepest common levels, in cm s-1
(6) pressure, in dbar, and

(7) planetary potential vorticity, g, defined as

G=fg I N2, 1012 m-1s-1

where fis the Coriolis parameter, g the gravitational acceleration, and N the

buoyancy frequency.? This variable was smoothed with a Gaussian to
remove <50 m scales.

The sections were contoured using the PLOTS program (Keffer, PLOTS Ver. 3.4,
unpublished program documentation).

The contoured sections of pressure as a function of potential density are a bit
unusual and their use deserves mention: (i) They allow the original depth (pressure) of
tracer contours plotted as functions of potential density to be easily determined.

(ii) They show the volumetric extent of tracer anomalies. These anomalies can expand

1Velocity was contoured only for the 1985 transects, and velocity on potential density
surfaces only for the 1985 Agulhas and Return Current transects.

2The conservation equation for potential vorticity formed from N2 is derived in
Appendix B. The increment between adjacent solid ¢ contours in the Atlas g sections is

In gne1 - In g = 0.346 (const.)

where the contour value ¢, is given by 272 (16, 23, 32, 45, 64, 90, 128, etc., in units
of 10-12 m-1 s~1). Dashed contours are introduced near ¢ minima at intervals of 27/4,
This gives approximately evenly spaced g contours in potential density coordinates,

since the basic stratification (proportional to N2) is about exponential with potential
density. This contour increment was chosen to correspond approximately to the smallest
mappable g features, consistent with the usual practice of contouring oceanographic
variables (for example, oxygen) at slightly above the measurement error.

The buoyancy potential vorticity source term due to changes in pressure
following a parcel (see Appendix B), implies that even in the absence of mixing, the
buoyancy potential vorticity of a parcel descending on an isopycnal from
0 to 1500 dbar (an extreme case) changes by an amount equal to 2-3 contour
intervals, with contour values defined as above. The error accumulates non-linearly
with pressure change, so surfaces descending half as far have less than half the error.
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and visually dominate contowred sections of tracer as a a function of potential density,
when tracer anomalies occur in highly stratified layers. And (iii) they show where
tracer gradients on isopycnals are located in the water column, which is useful since
tracer gradients on isopycnals outcropping into the mixed layer and on subsurface
isopycnais are generally produced by different physical mechanisms, e.g. local
atmospheric forcing (a locally non-conservative process) vs. confluence of water from

different remote formation regions (locally conservative).
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Appendix A: Potential vorticity in isopycnal natural coordinates
Definition of total potential vorticity. The definition of q is (Ertel, 1942):

q= ;15(2{“9 Vo (A.1)

with the potential density 0 marking the separation of material surfaces, as in
Eq. (A.2). Eq.(A.1) can be rewritten without approximation as
pg={2Q2sin(0+ ¢)+ {xsin@+ &y sin ¢+ §z)(cos ¢ cos o) Ival (A.2)
(a) (b) (c) (d)
where 2 and £ are the earth's rotation vector and rate, 0 is the latitude, (@, ¢) are the
(x, y) angles of tilt of isopycnals. E is the relative vorticity vector V x u and {(x,y,z) its
Cartesian components, and [Vl is the magnitude of the potential density gradient
vector.}
Simplification. Isopycnals tilt no more than 0.6° (0.01 rad) in the Agulhas,
descending Ak = 103 m over a horizontal distance of L = 105 m. This allows the

approximations:

sin (@, 9)~ (9, ¢)
cos (@, §) ~ 1 (A.3)

Ivol = %(zz Y[ sin2@ + sin2¢ + cos?@ cos2¢] ~ %o

Also, the variation of planetary vorticity with latitudinal isopycnal tilt ¢, which

appears in the term 212 sin(6 + ¢), may be neglected since sin(8 + ¢) and

1A discussion of the role of potential density reference pressure in potential vorticity
calculations is given in Appendix B.
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sin 6 differ by only 0.01 sin 6, if isopycnals tilt ¢ = 0.01 rad at a latitude of
6 = 35°.
The potential vorticity expression of Eq. (A.2) becomes, with these

approximations:

. do
pq ~ {2n(sme)+¢g,,+ ¢C(y)+§(,,};; (A4)
(a) (b) (c) (d)

Horizontal vs. vertical components of relative vorticity. The potential vorticity

terms due to the horizontal and vertical components of relative vorticity? have the scales:

v | o U

olx. 96~ 9x % ~ T(P
(A.5)

> x v

4 T %"y T I

where H and L are the vertical and horizontal length scales of velocity variation. It is
assumed that the scales of (x, y) variation are similar over the course of the

retroflecting path. Notice that the vertical component of the relative vorticity itself is
much smaller than the horizontal component, since % << % Relative vorticity terms

due to the curl of the vertical velocity, V X w have been neglected under the assumption
HAu,v)
that

<< rx'y) .

x,y)

2The horizontal component of the relative vorticity vector, {.y), also called vertical

Au,v)

shear vorticity, is due to vertical shear of velocity—;z—-. The vertical component of the

relative vorticity vector, {;), also called horizontal shear vorticity, is due to horizontal

shear of velocity, gv; - 8;;
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The ratio of the potential vorticity terms due to horizontal and vertical relative

vorticity is:
(¢, 9)&(x, oL 4h
___;El)_ ~ T -~ = (A.6)

The value of this ratio for the Agulhas at the 1985 transects is roughly one, since depth

variation on an isopycnal is at most Ah ~700 m, similar to the depth H over which

velocity varies. Notice that the horizontal vorticity |4 %zl - %‘zil itself is much larger

in magnitude than the vertical vorticity lgf . 3;% l.
Isopycnal vs. isotach slopes. The ratio of the potential vorticity terms due to

horizontal and vertical relative vorticity can, in fact, be estimated by eye directly from

velocity and potential density [i.e., A, see Eq. (A.2)] sections, since:

4 tan(¢.9) (4.9 (A7)
H tan y y '

where -%—h = tan (¢, ¢) and ’Li = tan ¥, with ythe off-horizontal angle of isotachs.3

The approximations noted in Eq. (A.3) imply tan ¥~ y. Maximum isopycnal tilt is
only slightly less than maximum isotach tilt in the Agulhas, as can be seen in the Atlas
contoured sections. Note that maximum isotach tilts are observed in the shoulders of
the jet, particularly the cyclonic shoulder, offset from the maximum isopycnal tilts

observed in the jet's velocity maximum core.

3sopleths of velocity.
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Scaling. The simplified potential vorticity expression, Eq. (A.4), can be scaled
in the usual way. First, the relationship between the isopycnal tilts (¢, @) and the scales

U,N2,f, L, and H is determined by the thermal wind balance:

(¢ 9 ~ zgﬁ ~ €818 © (A.8)

where 6 = }—Z—

Then the potential vorticity expression Eq. (A.4) scales as follows:

do do do
pq ~ fg +t@a+rdmlg + o g (A.9)
v v v
foN? feU2 UpN?
4 gI-l2 Lg
v v v
fpN? U2 U
8 {1 N2H? L }
v v v
N2 82
P 1 T e )
(a) (b, c) (d)
where S is the Burger number NZH? € is the Rossby number y and N is the
’ ?L_ ’ ’ 7[ ’

Brunt-Viisidld or buoyancy frequency g%ze.‘ The ratio of isopycnal and isotach
P
slopes is just

4 g
T - Qfl -~ g5 (A.10)

4The Richardson number is given by a combination of these scales,

N2H2 . . . .
Ri ~ 7 Se2. The horizontal vorticity scale is thus Ri-! as compared to the

planetary vorticity (J. Zemba, unpubl. man.; Garrett, 1952).
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Transformation of simplified potential vorticity equation into natural
coordinates. The potential vorticity may be transformed into terms that depend only on
the physical state of the jet, not its (x, y) orientation, by transforming into along- and
across-stream narwural coordinates.

Let (s, n) represent the along- and across-stream coordinates and (8, R ) the

unit vectors. Then

u = vix,y.z)8%x y 2)

{=vVx$+ Vixs (A.11)

= ¢ [v( %ryn- &y, ,(,,g;_'- s3] +
PSR, Bmy o2 o3 1+
R[K,v’-%v;]

K is the horizontal path curvature, defined by% = K, #. The radius of curvature is

R, = K1, The (x, y, z) components of § are (s(x), S(y), 5(z)). The horizontal cross-
stream velocity gradient is defined by R % = Vv

Terms due to the curl of the vertical velocity may be neglected when

NSz _ ow HNu,v)
Tux,y )y = FAxy) << Ixy) (A.12)
Terms due to velocity veering may be neglected when
|v’%’;f—| <<%— (A.13)
Dropping these terms leaves
¢~ (P to) oL+ #[ Ko 2] (A.14)
(b, c) (d)
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Cross-stream isopycnal tilt angle.  The horizontal and vertical relative
vorticity contributions can be combined in a single physically meaningful term, by

introducing the cross-stream isopycnal tilt angle v.

First we need the relationships:

A-Vo = =+ = Vol sinv = # (¢xVo) (A.15)

do
~ (s - sye) %

making use of £ % # = R and the fact that the vertical component of Vo is opposite in

d c?l

sign from R. Define I = Then the cross-stream isopycnal shear can

o= const.’
be written as
9 _ v _o A - .- A BRPINPP
on’ on on don=°cmst  op on 9z \oz '
= %,‘ - (s - S(y)‘P)%'
which can be substituted into Egs. (A.14) and (A 4), giving
’ dJdo
- [ 7 + Ky - §—”,,— | (A.17)
(@) (d) (b, ¢, d)

This is the isopycnal natural-coordinate form of potential vorticity, appropriate for

western boundary currents if veering vorticity is negligible.
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The veering vorticity component of the relative vorticity vector, which was
neglected from the natural coordinate formulation (Eq. A.13 above), is also neglected

do .
here, since it contributes only through the term v’g‘;; pr ot whose ratio to term (b, ¢, d)

h ’
of Eq. A.17 is v%%/ %‘}%, where %g represents the cross-stream slope of

isopycnals. Thus veering contributes only order gh; (<0.01 in the ocean) to potential

vorticity when its contribution to relative vorticity is as large as that of vertical shear

(%

Summary. Total potential vorticity may be estimated using the expression given
in Eq. (A.17) in strong jets. The only neglected terms are (i) potential vorticity due to
velocity veering, (ii) terms due to the curl of the vertical velocity, and (iii} the product
of the horizontal components of the planetary vorticity vector and the potential density
gradient. Along- and across-stream directions is determined by the direction of flow
itself and can vary with depth.

The relative importance of potential vorticity terms due to vertical shear vorticity
and horizontal shear vorticity is given by the ratio of the isotach off-horizontal angle to
the isopycnal off-horizontal angle, which can be estimated from contoured sections of
velocity and potential density. This ratio is equivalent to £5-1 in terms of the usual non-
dimensional numbers ¢, the Rossby number, and S, the Burger number; and £5-1 is just
Ah/H, where is Ah the depth variation on an isopycnal and H is the depth over which

the velocity varies.
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Appendix B
Buoyancy potential vorticity: conservation equation
and relation to neutral surface potential vorticity

Absract

The exact conservation equation is derived for potential vorticity constructed
from the three-dimensional vector analog of buoyancy frequency. The effects of saline
contraction and thermal expansion pressure-dependence appear in two distinct groups of
source terms. One of these groups is related to changes in stability following the flow
across pressure surfaces, and the other to the helicity of neutral trajectories. The
groupings clarify the physical interpretation of neutral trajectories and surfaces, and
neutral surface potential vorticity.

Buoyancy potential vorticity (BPV) varies with pressure, even when salt and
potential temperature are conserved following the flow. When potential temperature
decreases with pressure, BPV increases by a quarter of its value for warm water
displaced from the surface to thermocline depth, and by a third for cold water displaced
over the full water depth. These values are equivalent to a single contour interval on
potential vorticity maps and sections appearing in the literature. Displacing neutrally
stable water masses upward can cause convection, mixing salt and potential temperature
vertically. ‘

These BPV changes are proportional to the non-zero partial derivative of BPV
with pressure alone and to changes in pressure following the flow. If absolute vorticity
can be estimated, as is the case when relative vorticity is negligible, the derivative is a
well-defined scalar function of the salinity, temperature, and pressure fields in the fluid.

BPV also varies along a trajectory by an amount proportional to the turning of
isopycnals with pressure in salinity/potential temperature/pressure coordinates and the
neutral part of potential temperature changes. It increases by 4 x 10-12m-1s-1K-1 for
cold water (1 C) where the isopycnal tuming is greatest. This can be as large as
changes from B VP pressure-dependence in weakly stratified water, but is an order of
magnitude smaller than pressure-dependent changes in well-stratified water. The slight
rectification (helicity) of neutral trajectories also results from the tumning of isopycnals.

Gradients of changes following the flow in locally-referenced potential density

also alter BPV, just as gradients of changes following the flow in a scalar A alter Ertel's

potential vorticity constructed from gradients of A. Changes following the flow in
locally-referenced potential density also alter BPV through the variation of isopycnal
spacing with pressure in salinity/potential temperature/pressure coordinates.

. A differential expression for neutral surface potential vorticity is derived from
the BPV conservation equation.
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B.1 Introduction

The non-linearities of the equation of state of seawater are a source of
uncertainty for general circulation oceanographers. These non-linearities complicate the
mapping of surfaces on which buoyancy restoring forces vanish and eddy stirring is
presumably at a maximum. Constant potential density surfaces approximate these
surfaces fairly well above the thermocline, where height variations on surfaces are
relatively small [O(500 m)]; but in the global thermohaline circulation, where height
variations approach the full water depth [O(5000 m)), potential density referenced to a
single reference pressure is nearly useless. Several (often three) reference pressures are
used in much of the later classical literature (e.g., Lynn and Reid, 1971) in an attempt to
deal with this problem. Some recent investigations use many reference pressures
separated by only hundreds of meters: the density field itself dictates the exact reference
pressure for each isopycnal in Armi and Stommel’s (1983) work, while descending
isopycnals 'handshake' from one predetermined constant reference pressure to the next
in Rintoul’s (1988) inverse models. Ivers (1975), Shepherd (1979), McDougall
(1984), and McDougall and Jackett (1988) developed an even more sophisticated
approach, finding 'neutral trajectories’ between a parcel at one hydrographic station and
its neutrally-buoyant height at the next.

The non-linearities of the equation of state also complicate potential vorticity
formulation. Potential vorticity is conserved following the flow, except for friction and
mixing source terms, when it is constructed such that vortex tube stretching can be
accounted for indcpender;tly of stretching due to thermodynamic effects. Various forms
of potential vorticity that at least partially decouple the vortex and thermodynamic
stretching appear in the literature: potential vorticity has been constructed from gradients
of potential temperature, from gradients of potential density referenced to a constant

pressure, from buoyancy frequency; and from neutral trajectories [by Hall, 1985,
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McDowell et al., 1982, McCartney, 1982, and McDougall, 1987a, 1988, respectively].
The physical differences between these forms received only passing mention, and
quantitative differences were ignored, until McDougall (1987a, 1988) estimated that
potential vorticity formed from buoyancy frequency can double or triple over a pressure
change of 1500 dbar.

In this paper, the exact conservation equation is derived for potential vorticity
constructed from the three-dimensional vector analog of buoyancy frequency. A
familiar source appears, resulting from gradients of changes following the flow in the
locally-referenced potential density. This potential vorticity source vanishes when salt
and potential temperature do not change following the flow (adiabatic flow), or when
the salt and potential temperature buoyancy fluxes balance (neutral flow).

In addition, two new and unfamiliar sources are found. Both depend upon the
variation in the speed of sound with salt and potential temperature (or, equivalently,
after interchanging derivatives, the pressure dependence of the thermal expansion and
saline contraction coefficients). One new source is associated with changes in pressure
following the flow (diabaric velocity), and the other with changes in salt and potential
temperature following the flow. The Ertel's potential vorticity source term associated
with baroclinic torques vanishes.

Both new sources can be decomposed into neutral and dianeutral parts in
salinity/potential temperature coordinates. These parts correspond respectively to
turning and crowding of isopycnals with increasing pressure. The tuming and

crowding effects are contained in the thermodynamic derivatives sz and &p (called
dsdp d60p

thermobaricity by McDougall, 1987). Variations in sound speed with pressure, and
variations in saline contraction and potential temperature expansion with salt and

potential temperature do not contribute explicitly.
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(a) New source proportional to cross-isobgr flow

The first new source can make a non-negligible contribution to buoyancy
potential vorticity in the ocean. It is proportional to the change in pressure following the
flow and thus can be non-zero even when salt and potential temperature do not change
following the flow. Buoyancy potential vorticity can increase by a quarter of its value,
for warm water displaced from the surface to thermocline depth, and by a third for cold
water displaced over the full water depth. These values are equivalent to a single
contour interval on potential vorticity maps and sections appearing in the literature.

The main mechanism for this buoyancy potential vorticity source can be
understood as follows. In situ density surfaces squeeze together as pressure increases,
governed by the speed of sound and changes with pressure in saline contraction and
potential temperature expansion. Since the buoyancy vector is defined such that it
differs from the in situ density gradient by an amount proportional to the speed of
sound, the change in the broyancy vector has only the parts due to the pressure
dependence of saline contraction and potential temperature expansion. This
thermodynamic alteration of the buoyancy vector with increasing pressure must appear
as a source term for the buoyancy potential vorticity. Without it, pressure changes
alone, in the presence of suitable salt and potential temperature gradients, would appear
to induce relative vorticity or flow across planetary vorticity contours.

If the absolute vorticity can be estimated, as is the case when relative vorticity is
negligible, this source is a mappable function of the salinity, temperature, and pressure
fields in the fluid.

322




The neutral component of the second new source makes a contribution to

buoyancy potential vorticity in the ocean that is as large as the pressure variation in
weakly stratified seawater, but an order of magnitude smaller than pressure-dependent
changes in well-stratified water. The neutral part of the second source arises from the
turning of isopycnals with pressure in (s, 6, p) coordinates and is related to the slight
non-closure of neutral trajectories. Plots are shown of the neutral part for representative
neutral trajectories in the world ocean. (The dianeutral part is grouped with other

dianeutral sources.)

(c) Neutral trajectories

Neutral trajectories are those along which salt and potential temperature changes,
if any, compensate such that buoyancy restoring forces vanish. Such trajectories do not
in general form exactly closed orbits when traced through a steady salinity/potential
temperature/pressure field along a path whose horizontal component closes; a small
difference in height between the beginning and end of the path usually remains.
[McDougall and Jackett (1988) coined the word 'helicity' for this phenomenon. Here it
is called 'rectification’, to associate it with the non-closure of parcel trajectories in some
kinds of waves.] The notation developed for the buoyancy potential vorticity

conservation equation is used to show where rectification has the greatest magnitude.

) N | surt; al vortici
A differential expression for neutral surface potential vorticity is derived from
the buoyancy potential vorticity conservation equation. This equation shows that

gradients of neutral surface potential vorticity are proportional to gradients of buoyancy
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potential vorticity, plus terms proportional to the new buoyancy potential vorticity
sources.

The physical insight afforded by this new differential equation parallels and
clarifies points made by McDougall (1988) in his integral formulation of neutral surface

potential vorticity.

(e) Qverview of paper

Readers not interested in the mechanics of the derivation of the conservation
equation may wish to skip the next three sections: basic definitions and discussion
underlying the derivation of the are presented in Sec. B.2, the derivation itself is
presented in Sec. B.3, and the conservation equation is refined further by dividing the
salinity and potential temperature gradients and changes following the flow into neutral
and dianeutral parts in Sec. B.4. The conservation equation before this step appears as
Eq. (B.19); the decomposed source terms appear as Eq. (B.25) and (B.26). A
glossary of symbols and guide to equations follows the body of the paper.

Pressure dependence of buoyancy potential vorticity is discussed and estimated
in Sec. B.5. Dependence on neutral salinity and potential temperature changes and
isopycnal turning is discussed and estimated in Sec. B.6. A brief mathematical
explanation of neutral trajectory rectification based upon the buoyancy vector is given in
Sec. B.7. The differential expression for neutral surface potential vorticity is derived

from the conservation equation in Sec. B.8. The results are summarized in Sec. B.9.
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B.2  Preliminaries: definitions and discussion

(a)  Ertel’s potential vorticity
Entel's potential vorticity, q, is defined by:

©a
q = — VA (B.1)
p
where the p is the in situ density, the total vorticity is given by @y = 20 + { (planetary

2Q2plus relative §) and A represents some scalar property of the fluid (Pedlosky, 1979).

Changes in g following the flow are given by

4

13'1(2.1:’_‘2+£)-V[%1 +p3(VAxVp)» Vp +
@ 1y

p-1VA -V x (F;) (B.2)
(m)

where p is the pressure. Both Eq. (B.1) and (B.2) are derived from the Navier-Stokes

equations without approximation.

(b) Sound speed
The derivative%’;- I(s o is related to the sound speed c:

I o
ez = 35'(:.9) (B.3)

The salinity is represented by s, and the potential temperature by 6.
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Potential density o, is defined by

Or (X0, Yo, 20) =

J
D (Xo, Yor 20) — 1000 + f dp’ Dp_ I (B.4)
p (-"co,p')

p(x0.Y0:20)
During the integration, (s, 8) are constant and equal to their values at (x,, y,, Zo). The
integrand represents the change in density that the parcel would experience during a

displacement from its in situ pressure p to the reference pressure r.

m R ! . ! 1 ! Clz [ . { [ . L.
The buoyancy frequency is denoted by N. Locally, in the neighborhood of a

pressure r, the usual definition of :%NZ (g is gravitational acceleration):

PLy2 . 9% _ 94
e F - 3R, ®3)

can be recovered from the definition of potential density (Eq. B.4) in two steps:

(i) vertical differentiation, making use of Leibniz's rule

%‘;_r= fdp;;;,; (s8p) %%lu,qp} ®6)

and (ii) letting p— r as the neighborhood becomes arbitrarily small; in this limit, the
middle term of Eq. (B.6) vanishes.
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(el  Neurralflow

The neutral flow condition is

DOn _ 5.Dsy

where the thermal expansion coefficient is ' = —p‘l-g-% I( )and the saline contraction
S\p

coefficient is B’ = p-! %sl |(6p) (see Gill, 1982 for their relationships to the expansion

coefficients in terms of in situ temperature).

Neutral tangent planes, defined by

a'Ve, =pVs, (B.8)

are tangent to potential density surfaces referenced to a pressure r in the neighborhood
of r . Stirring processes such as eddies are thought to displace parcels laterally along
these neutral tangent planes/local potential density surfaces, since buoyancy restoring
forces vanish for such displacements. Other physical processes displace parcels across
these planes (McDougall, 1984).

The neutral flow condition will be used in this paper to decompose salinity and
potential temperature gradients and changes following the flow into neutral (subscript n)
and dianeutral (subscript d) parts.

(f) Potential temperature reference pressure

Potential temperature, like potential density, is referenced to some arbitrary
pressure. Potential temperature reference pressure choice may influence potential
temperature gradients on mapping surfaces slightly, through the salinity dependence of
the adiabatic lapse rate.
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The equations used in this paper follow from properties of the thermodynamic
fields that do not depend on potential temperature reference pressure choice: the in situ
density gradient, the speed of sound, and the pressure gradient. The quantities a'd@
and B'ds, from which the 0 reference pressure dependence has been removed, appear

here, but 46 does not. Thus the reference pressure choice for 8 need not worry us; any

strictly constant pressure is acceptable.

3. Derivation of the conservation equation for buoyancy potential vorticity

(@) Threedimensional o8 of | ;
The three-dimensional analog of ;%N 2R is given by

dp
= \v4 -
L p 95'(,.0) vp
8p| 3p|
= = v \v} .
20 (e o6 + 0, 7 (B.9)

(b) B al vortici
The buoyancy potential vorticity is given by

Z=— L (B.10)

The buoyancy planetary vorticity is -§N 2,

(c) Search for A
Ertel's potential vorticity (Eq. B.1) is constructed from gradients of a scalar
Wy
quantity A. Is there a scalar A that corresponds to — * VA = Z? Since p — r in the
p

definition of N2, we might (naively) try to define A by taking the limit r — p in the
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definition of potential density, Eq.(B.4). But we find that o, — p,
Wq

while — « Vp = Z
P

We might also try to define A by setting VA equal to L. However, it tumns out
that VA cannor equal L, since L is not in general irrotational, and gradient fields always

are.l

Thus it appears that we must abandon the search for a globally-valid scalar A

that corresponds to Z .

(d) Angiternative approach

Even without A, we can still write a conservation equation for Z. First, we take

Wq
the substantial derivative of Z= = + [Vp - % I( 0 vp ]
P s,

Wy @
DZ D r~ Dy d ~2
= pl=vel - glFEl >Vl ®.1)
IThat is,

VxL=-V %?l(o.p)x Vp #C .1 general

but for any scalar A.

Vx VA=0.

[Recall that %—lm ) is related to the the sound speed c.]
P
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Now, using the conservation equation for Ertel's potential vorticity (Eq. B.1) twice,

once with A = p, and once with 4 = p, gives

DZ _ Dg(A=p)
D - D T
iy
. D dp ap Dgq(A=p)
p ve 5535'(:.9) - 33'(:.9) Dr (B.12)

(a)

The term labelled (a) does not have a parent term in Eq. (B.1). Substituting in the

source terms for Ertel's potential vorticity from the right-hand-side of Eq. (B.2) gives

= . (B.13)

Dp  op Dp D
(Vo 35'(:,0)v D~ vpﬁ[gﬁl(:m 1}

@, A=p) (1, A=p) (a)
+ plL-Vx ( Ii)
p
I

Labels beneath each term correspond to those under Eq. (B.2). Contributions from the
baroclinic torques (term II) vanish for both A =p and A = p.

The first term from this equation can be expanded in the thermodynamic

derivatives:




which follows from p = p(s, 6, p) . The second term of Eq. (B.13) can be expanded

using the product rule, which gives

p| . yDp Ex
..V = .
BF-’.I(:.O) p Dr p {
(I, A=p)
ap Dp Dp o9p
V[EEI(,,o) 7% ] - s V?EI(,,Q, } (B.15)
(e) (d)

The terms marked (e) in Eq. (B.14) and (B.15) cancel in Eq. (B.13). Terms (b) and
% Do,

(c) combine to form — « V B where o, is the locally-referenced potential density.
P

Terms (a) and (d) can be expanded in thermodynamic derivatives to yield:

Wy 0y
- D o -
ry Vr i 3%'(:,0) By v | ®-10
(a)
Ds J D6 9 Dp J %P
Dx EEI(M) *Dr 39|(8-p) Y Dr EI(LO) } $|(s.9)
(a1) (a2) (a3)
and
D4 @4
Dp ~ ap | Dp ~
.y = =. .
o> VF e 7T - { (B.17)
(d)
d d d | dp
ve <
ngs-l(}’-a) ¥ OJOI(S.P) ¥ Vp$ (5,8) } %_I(s.e)
(d1) (d2) (d3)
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With the cancellation of terms (a3) and (d3) and of the terms labelled (e¢) in Eq. (B.13)

and (B.14), and the substitution

dp
L = TI -Ve6 -—I «V B.18
u 5 u + 30 (5.p) u Ky ( )

we get the simplified conservation equation for Z from Eq. (B.13):

0y
DZ ~
e _ .. (B.19)
Dr p
dp ds i}_)_ a0 .
{v [vs-|(o,,,,7] .V [aelww] vul -
(b1 (c1) (b2)+(c2)
Ds dc-2 D@ gc-2
[(ﬁ.?;_|(9.?) + —D-t_ _35-'(3,}’) ) ] Vp +
(al) (a2)
a2 ac-2 D,
[(VS?S—|N'P) + VO 39 |(J‘,P) ) ] ﬁ }
(d1) (d2)
+ plL-Vx ( E)
p
i
The terms are:

(b1), (c1) Time dependence.

(b2), (c2) Buoyancy advection. These vanish in neutral flow, which includes as a
special case zero salt and potential temperature changes following the
flow.
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(al), (a2) Proportional to isopycnal crowding and tuming, and to salt and potential
temperature changes following the flow. These terms vanish if salt and
potential temperature do not change following the flow. They do not
vanish in other types of neutral flow.

wl), (d2) Pressure dependence of buoyancy potential vorticity. These vanish only
if diabaric velocity l—g is zero.

4. Decomposition into newtral and dianeutral parts

Isopleths of density rotate and crowd together with pressure on the
salinity/potential temperature plane (Fig. B.1 and B.2). This plays a role in the
buoyancy potential vorticity sources (al) and (a2), and (d1) and (d2) in Eq. (B.19).

The turning is also responsible for the slight non-closure of neutral trajectories.

(a)  Lsopycnal turning angle
The angle @ between constant density lines and the s-axis on an (s, 6) plot

(Fig. B.1) is

o = arctan =6,0p/d8  _ arctan Ooa' (B.20)
Soap/& SOB

where the thermal expansion coeffcient is o’ = —p-/ g% |( )and the saline contraction
P

19 I

coefficient is B’ = p 7 | (op)

. The arbitrary scale of the (s, 6) diagram is specified by

6,, the number of degrees of potential temperature per unit distance, and s,, the number

of practical salinity units per unit distance. The rate of rotation of isopleths of density

with pressure is given by Sg'
op 5000 dpa’ IpB’
= - (4 —;p— B.21
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= === constant p(s, 0, p, - dp/2)

constant p(s, 9, p, )

constant p(s, 8, p, + dp/2)

Fig. B.1 - Isopleths of density at different constant pressures in (s, 6)

coordinates. The change in angle with pressure is marked d.

334




——== constant p(s, 8, p, - dp/2)

constant p(s,9,p,)

Fig. B.2 —Isopleths of density at different constant pressures in (s, 6)
coordinates. Two pairs isopleths are shown, separated by an equal increment of
density at the respective pressures. The separation D between isopleths decreases

with pressure.
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The quantity in the denominator of the fraction, which is given the symbol D2, has units
of density squared. It is the square of the density increment along the hypotenuse of a

(So X 6,) square on the (s, 6) plot.

We divide sait and potential temperature gradients and changes following the
flow into two parts: (i) neutral (subscript 7#) which is tangent to isopleths of density in

the (s, 6) constant-pressure plane, and (ii) dianeutral (subscript d), perpendicular to the

first:
Ve = Ve, + V63, Vs =Vs, + Vs (B.22)
D6 D6 D@, D D.
2. . D4 Z.fa .y @

The decomposition is illustrated in Fig. (B.3). This segregates into separate terms
salinity and potential temperature changes associated with different physical
mechanisms. Neither part is necessarily small: local conditions such as the presence or
absence of lateral (s, 6) fronts dictate the relative magnitudes neutral and dianeutral

salinity and potential temperature changes.




do

total

do, =

ds ds d

total

ds

n

constant p(s,6,p,)

Fig. B.3 — Decomposition of salinity and potential temperature changes

(ds, d8)t,,,; at p,, into neutral and dianeutral parts. Shaded arrow and boxes: total

salinity and temperature change. Black box, dashed arrow, subscript d: dianeutral
part of changes. Open box, dot-dashed arrow, subscript n: neutral part of
changes.




(c) D rion of ¢ al vortici .

D
We use the neutral flow condition a’ Detn =g and the orthogonality of the

neutral and dianeutral vectors on the (s, 6) plane to transform terms (al) and (a2) of

Eq. (B.19):

ah a ’

= . Jpa dff’ D6n
@al+@2) =— - Vp {(pB)! (PP - paf-jp= +

P “op o " Dr

(apl)+(an2)
2 D,
(20,°pa)! %;— —D,—é } (B.24)
(ag1)Hag2)

(We could just as well have written this in terms of s, and s4.) Recall that D? is the
square of the density increment along the hypotenuse of a (s, x 6,) square on the (s, 6)
plane. Buoyancy potential vorticity changes in proportion to the variation of this
increment with pressure and dianeutral potential temperature changes.

Substituting the expression for % into Eq. (B.24) gives:

o
(al) + (a2) =;—-Vp {
R i 228
ovo
(a1 +(202) (adl)"'(ad2) (B.25)
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This shows that changes in buoyancy potential vorticity result from the neutral component
of potential temperature changes following the flow [source terms (agl) and (a2)].2
Dianeutral potential temperature changes contribute through terms (ag1) and (a42), as well
as through the terms (b2), (c2) of Eq. (B.19).

Note that Eq. (B.25) is subtracted from the right-hand-side of the buoyancy
potential vorticity equation.

The source terms (d1) and (d2) can be similarly decomposed, giving:

@dy+@2 = = - {
p

D? dp .y aD? D
2P ve, + (20,2pa)! &= vg;}L
oBsabs o Foort 5 Vel

(dnl1)+(dn2) (dg1)+(dg2) (B.26)

This ~hows that both turning and crowding of isopycnals in (s, 6) coordinates with

pressure play a role in the pressure dependence of Z.

B.5 Pressure dependence of buoyancy potential vorticity
The pressure dependence of buoyancy potential vorticity, %, is given by

terms (d1) and (d2) of Eq. (B. 19). Since Z is a function of (s, 6, p, g, Vs, Vo),

in this partial derivative with pressure the other five variables are kept fixed.

2 Term (api)+(an2), Eq. (26) is opposite in sign from D; . since %F is always negative

(again with the convention that planetary vorticity is always positive, i.e., @y ~ AR .

We may check the sign by notmg that Za Vp Dt , the original term (a) in Eq. (12),
p

is opposite in sign from potential temperature changes following a neutral trajectory,

-2
since as 0 increases, ¢ increases and%—< 0, using faf > 0 in both hemispheres.

339




What is the magnitude of dZ/dp for ocean interior flow? The approximation

a, 'V ~f gz-is appropriate for interior flow, and we may neglect the salinity

dependent part of dZ/dp in favor of the potential temperature dependent part. Using
these approximations, the scale of AZ for a pressure displacement Ap is:

1?(-%-3 349;— ) j—f—Ap (B.27)
Planetary potential vorticity constructed from density gradients and buoyancy frequency
is reported with positive values in both hemispheres, so we use -If | in place of f.

Typical oceanic values are shown in Table B.1. Buoyancy potential vorticity
increases by 40 x 10-12 m-1s-! during a displacement of 10 C thermocline water from
surface to the thermocline pressures (nominally 1 km or 10 MPa), and by
3 x 10-12 m-1s-! during a displacement of 1 C deep water from surface to deep ocean
pressures (nominally 4 km or 40 MPa). These changes are about a quarter (of
200 x 1012 m-1s-1) and a third (of 10 x 10-!2 m-s-1) respectively of the buoyancy
potential vorticity at depth. McDougall (1988) estimates that buoyancy potential
vorticity doubles for 8 =6 C and Ap = 1.5 MPa (1500 m).

Increasing pressure stabilizes the water column slightly when temperature
decreases with depth and salinity effects are small, as is usually the case in the ocean.
Conversely, decreasing pressure (upward motion) destabilizes the water column.
Displacing neutrally stable water masses at depth upward can cause convection, mixing
salt and potential temperature.

The magnitude of these buoyancy potential vorticity increases with pressure may

be compared to (i) the buoyancy potential vorticity itself; to (ii) gradients of potential
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Table B.1 - Scale values needed to estimate size of buoyancy potential vorticity

changes associated with pressure change. Spatial estimates are from

just south of Africa in the Agulhas Retroflection (Bennett, 1988).

f 1x 10451
i) 1000 kg m-3
At10C:
c 14990ms! at Odbar
1506 ms-!  at 1000 dbar
dc/ 96 3.6ms 1K1
c30c/08 1.1 x 109 m252K-1
06/0z 1.7x 102K m!
9Z/dp 3.8x 1018 m-151Pal
z 200 x 10-12m-1 51
AZ 40 x 10-12m 1 s-1, 1 km displacement from surface
to thermocline pressures
At 1C:
c 1455ms1 at Odbar
1529 mst  at 4000 dbar
ocl 90 45ms1K-1
c30c/06 32x1010m25-2K-1
d06/0z 1.0x 103 Km'1
JZ/dp 6.4x10-20m-15-1
Z 10 x 10-12m-15-1
AZ 3 x 10-12m-! s-1, 4 km displacement from surface

to bottom pressures
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vorticity on isopycnal or neutral surfaces; and to (iii) erosion of vertical extrema in

potential vorticity across a basin:

(1) The increases are moderate compared to buoyancy potential vorticity
values: a quarter to a third.

(i1) The increases are very small compared to the largest potential vorticity
gradients on isopycnal/neutral surfaces. These are found across westem
boundary currents. Observed potential vorticity decreases from
>500 x 10-12m-1s-! near the surface to <150 x 10-12m-1s-1 at 700 m
across the Gulf Stream (Bower et al., 1985), clearly greater than the change
due to pressure dependence of buoyancy potential vorticity, and opposite in
sign. Where observed potential vorticity gradients on surfaces are smaller

and similar in magnitude to %— for example, near the edges of the uniform

potential vorticity pools that play an important role in some thermocline
theories (Rhines and Young, 1982) - the pressure dependence may
influence the oceanographic interpretation.

(iii) The increases seem to be nearly comparable in magnitude and of the same
sign as gradients of potential vorticity at the vertical minimum of the
Labrador Sea Water (LSW) core. Talley and McCartney, 1982, using
potential vorticity constructed from gradients of potential density referenced
to 1500 m, found LSW potential vorticity minimum values increasing from
the Labrador Sea value of 4to >16x 10-12m-1s-1 in the vicinity of the
Mediterranean tongue, as the core descends from 200 to 1500 m. The
vertical minimum of buoyancy potential vorticity would display the same
increase, plus an additional 10 x 10-12m-1s-1. approximately, due to
pressure dcpehdence.




B.6 Buoyancy potential vorticity source associated with neutral part of salinity and
porential temperature changes and isopycnal turning with pressure

The effects of the buoyancy potential vorticity sources associated with the neutral
part of potential temperature change and isopycnal tuming with pressure may be
visualized in the following manner (Fig. B.4). We consider a parcel centered at p,
pressure spanning a pressure interval dp in the direction of the absolute vorticity vector;
part of the parcel's net salinity and potential temperature changes satisfies the neutral
flow condition; any dianeutral changes are ignored for the moment, as they are governed
by different source terms. The upper edge of the parcel follows an isopleth of density
on the (p, - dp/2) constant pressure surface, while the lower edge follows an isopleth
on the (p, + dp/2) surface. This induces a density increment across the parcel and an
increase in buoyancy potential vorticity, as the upper edge becomes lighter and the lower
edge heavier with potential temperature increasing.

The part of term (ag[)+(ap2) of Eq. (B.25) that is enclosed in square braces is
55,,“ Again, since Z is a function of (sn, 5d, 6n, 64, p» @, Vs, V6), in this partial

derivative with the neutral part of the potential temperature change, the other variables

are kept fixed.

The scale of — in ocean interior flow is
n

-D2(p?B's56,)"! dp/dp () (-g) (B.28)

where p-/Vp ~-g has been used. The sign of gei is always positive since %Zlis

n
always negative.
We can estimate values of the thermodynamic parameters from Lynn and

Reid’s(1971) plots of potential density referenced to 0, 2000, and 4000 dbar at low
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~ — == constant p(s, 8, p, - dp/2)

constant p(s, 6,p, )

constant p(s, 8, p, + dp/2)

Fig. B.4 — Increase in density increment across parcel due to turning of isopycnals
with pressure and neutral part of salinity and potential temperature increases.

Shaded circles represent mean properties of parcel at p; circles marked with a
minus (-) represent properties a. ;,., - dp/2); circles marked with a plus (+)
represent properties at (p,, + dp/2). Arrows indicate neutral direction for each

level of parcel. Braces numbered / and 2 indicate density increment at p,, before

and after neutral changes.




. d
temperatures (-2 to 6 C); the greatest magnitudes of %occur at low temperatures and

great depth; f3' is relatively constant. The values are listed in Table (B.2).

Using these values, the scale expression (Eq. B.28) is approximately
4 x 10-12m-! s-1 K-1. This is close to the maximum magnitude for the oceanic range
of (s, 6, p) . It does not scale with the value of Z itself, so we may expect that it is
proportionally most important in weakly stratified water.

The potential temperature changes from 0.8 to 1.6 C on the 04 = 45.92
contour, taking this as an approximation of a neutral surface, between Antarctica and
Africa. The corresponding change in buoyancy potential vorticity is about
3.2x 10-12m-1 s-1, or a third of the value south of Africa. The change in buoyancy
potential vorticity due to pressure changes has the same sign and magnitude here, using
the estimate of the previous section. (The pressure and potential temperature buoyancy
potential vorticity sources have the same sign when potential temperature increases on a
descending neutral trajectory.) The abyssal buoyancy potential vorticity itself is about

10 x 10-12 m-15-1 here.

B.7  Neutral trajectory rectification

Neutral trajectory rectification and the mathematical connection to buoyancy
potential vorticity sources is briefly summarized here. Many of the equations parallel
the work of McDougall and Jackett (1988).

McDougall and Jackett trace neutral trajectories around the N. Atlantic above
the thermocline back to their starting point. These trajectories are found not to close by
1 —5m in the vertical. They estimate that this distance is an order of magnitude
smaller than the vertical distance between an average neutral surface and the centrally-

referenced potential density surface.
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Table B.2 - Scale values needed to estimate maximum size of buoyancy potential
vorticity changes associated with potential temperature change
along a neutral trajectory. Estimates are from Reid and Lynn

(1971), Fig. 1.

Ag —n/4 between 0 and 4000 m at 0 C

Ap 40 MPa (4000 m)

o9/ dp 1.9 x 108 Pa-! (kg-l m-! s2)

So 0.1 psu per unit distance on (s, 8) plot
dp/ds 0.8 kg m-3 psu-! (0.25 kg m-3 per 0.3 psu)
B 8 x 104 psu-l

6, 1 C per unit distance on (s, 6) plot

dpl 36 0.1kg m3 C-1(0.25 kg m-3 per2.6 C)

a 1x104C1

B2s,2+ a26,2 1.6x 108
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These two distances are analogous, respectively, to the neutral potential
temperature change/isopycnal turning contribution to buoyancy potential vorticity and
the pressure-dependent contribution. As we have seen, in colder, weakly stratified
water the ratio of buoyancy potential vorticity sources can be order one. This suggests
that the ratio of rectification to neutral/potential density separation may be order one
there also.

A neutral trajectory cannot exactly close around a non-zero plane area traced
through (s, 6, p) space (Fig. B.5). This implies that a neutral trajectory cannot exactly
close in (x, y, z) space either, unless the (x, y, z) trajectory maps onto a point or line
curve in (s, 68, p) space. Such a mapping occurs only if:

(1) the (x,y, z) trajectory is traced through an ocean subvolume where there is

a tight &s) relationship, or potential temperature or salinity are constant on
pressure surfaces, i.e., &p), s(p); or

(ii) the trajectory is a point or line curve in (x, y, z) space.

Consider a closed contour C that is either neutral or consists of a neutral trajectory
closed in the horizontal plus the vertical segment necessary to close it. The circulation

of L around C is not in general zero:

$L-dr = I (Vx L)-dn
C s
= -PVc2x Vp)-dn (B.29)
s

with § any surface bounded by C, dr everywhere tangent to C, and dn everywhere
normal to S. This indicates that closed contours are not quite neutral trajectories except

in certain special cases: S vanishing or dn everywhere parallel to Vc-2 or Vp .
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)

Fig. B.5 — Example of neutral trajectory rectification in (s, 0, p) coordinates.
Open dot: parcel trajectory starts at the surfacewith warm salty characteristics.
Curve 1: parcel cools and freshens along a surface neutral trajectory (isopleth of
potential density referenced to the surface). Dashed line A: parcel descends
without changing its potential temperature or salinity. Curve 2: parcel warms
and gains salt along a neutral trajectory at depth (isopleth of potential density
referenced to the new depth), until it regains its initial salinity. Dashed line B:
parcel rises to thie surface, again without changing potential temperature or
salinity. Black dot: note slightly different potential temperature after
completing neutral trajectory. Note that any neutral trajectory can be broken
down into an alternating series of infinitesimal isobaric (like curves 1 and 2) and
adiabatic (like dashed lines A and B) parts.

348




Mapping Eq. (B.26) into (s, 6, p) space, where the unit vectors are
€ =5,1Vs,8=0,1V0 and p = p,"IVp; 50, 65, and p, are the salinity, potential
temperature, and pressure increments per unit distance; and C maps onto C’, § maps

onto §’; and dn’ is normal to S, gives

a2
a6

p (%;sopoé) -
Y

0opo$§ ) dn’ (B.30)

Evidently closed contours do not quite coincide with neutral trajectories unless S*
vanishes, or dn’ is everywhere parallel to § , i.e., the neutral trajectory is confined to a
constant pressure surface. Since a neutral trajectory on a constant pressure surface must
follow isopleths of constant density, S’ vanishes for this case as well.

We may rewrite Eq. (B.30) very simply in terms of the unit vector in (s, 6, p)

coordinates that is perpendicular to isopleths of densit: on a constant pressure surface:
p=D1(pPs,$ - paby ) (B.31)

We will also use £, which is tangent to isopleths of density; (f, £, ') make a

right-handed triple. The associated scalar t (Veronis, 1972) is sometimes called

spicyness. Eq. (B.30) becomes

po B ( 5D +dn’ =po § (RE4) - dn’ ®.32)
.

The partial derivatives dre functions of the equation of state, mappable in (s, 6, p)
coordinates; and # - dn’ is, roughly, the projected area on a constant-t plane that is

enclosed by the circuit C".
Since the dependence of the speed of sound on salinity is small, from

Eq. (B.32) we may say that the rectification of any particular trajectory is proportional
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to (i) the variation of the speed of sound with potential temperature, and (ii) the
projected area on the 7 plane that is enclosed by the circuit C’. Rectification is largest
per degree change in potential temperature following a neutral trajectory of cold
(nominally 1 C) water that conserves (s, 6) as it sinks from the surface to great depth;
warms/cools neutrally (isopycnally) at depth; conserves (s, 8) as it rises from great
depth to the surface; and cools/warms neutrally at the surface back to its starting
temperature. These are also the circumstances where neutral potential temperature

changes produce the largest changes in buoyancy potential vorticity.

B.8 A differential equation for neutral surface potential vorticity

A differential equation for the separation between neutral surfaces in the
direction of the absolute vorticity vector can be derived from the buoyancy potential
vorticity conservation equation.

Neutral surface potential vorticity (NSPV) is defined by (McDougall, 1988)

N2

NSPV = fN? (W) (B.33)

where the subscript (1) refers to the value at a reference cast. Here we use the three
dimensional analog, NSPV3; =2 % The absolute vorticity vector makes the same

angle with the neutral surface and with the plane perpendicular to L. With this
definition of NSPV3,

dNSPV3 = (hWLID[AILI )1 dZ + Zd(h\WLI-1) ] =S(F) + S(e) (B.34)

where S(F ) represents frictional and S(e) dianeutral sources of NSPV3.

We may rewrite this as

d(inh)=d(In\LI"1) + Z-1 dZpys — (NSPV3)'! [S(F) - S(e) ] (B.35)
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where the subscript RHS indicates that the buoyancy potential vorticity source terms on
the right-hand-side of Eq. (B.19) will be used here.

Since the location of the initial cast is arbitrary, we may deduce that in the last
three terms of Eq. (B.35), the weighted frictional and dianeutral sources of Z and
NSPV3 cancel. This leaves a differential equation for the neutral surface separation in

the direction of the absolute vorticity vector in terms of the (s, 6, p, Z) fields:

dinh= dwr! + ZzZ1 (ggdp + .aa.oz- dé, ) (B.36)

n
where we have used the partial derivatives defined by the square-bracketed part of terms
(d1) and (d2) in Eq. (B.19), discussion in Sec. B.S, and the square-bracketed part of
term (apl)+(ap2) in Eq. (B.25), discussed in Sec. B.6.

The differential equation for h shows that changes in h are proportional to
changes in LLI-, plus the pressure and neutral potential temperature buoyancy potential
vorticity source terms. McDougall (1988) gives an integral form of this equation that
compares NSI'V to fN? in terms of gradients of properties along neutral surfaces and

slopes of neutral surfaces, integrated along a parcel path (his equation 53).
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B.9  Conclusions

The conservation equation for buoyascy potential vorticity a2llows buoyancy
potential vorticity changes following the flow to be computed and related to changes in
neutral surface potential vorticity. The conservation equation, with sources decomposed

and grouped into neutral and dianeutral components, is:

Wy
DZ ~ Doy
. . { — B.37)

(A)

—(2902pa')-1522- %OEVP
t

(B)

©

9
[W V6, +(2002pa)1§p— ve; ] ﬁ }

_D) Dé,
pﬂsoeo dp Dt
+ ptrevx (L )

(E)

A glossary of symbols and guide to equations follows the conclusions.

Source term (A) represents gradients, in the absolute vorticity vector direction,
of locally-referenced potential density changes following the flow. This is analogous to
the source term due to gradients of sources of a scalar A in the equation for Ertel's

potential vorticity equation constructed from gradients of A.
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Source term (B) arises from the crowding together in salinity/potential
temperature coordinates of isopycnals with pressure, and the dianeutral part of potential
temperature changes following the flow; this could, of course, have been written in
terms of the dianeutral part of salinity changes instead. The dianeutral component of
changes following the flow is perpendicular in salinity-potential temperature coordinates
to the locally-referenced potential density isopleth; the neutral component is tangent to
this isopleth.

Source term (C) arises from the turning in salinity/potential temperature
coordinates of isopycnals with pressure, and the neutral part of potential temperature
changes following the flow; again, this could have been written in terms of the neutral
part of salinity changes. Buoyancy potential vorticity increases about
4 x 10-12 m-1s-1 K-! with neutral potential temperature increases for cold water where
the turning is greatest. Since the source term does not scale with the buoyancy potential
vorticity itself, it is proportionaily most important in weakly stratified water. It can be
as large as the pressure dependent source (term D) in cold, weakly stratified ocean
water. An integral equation for neutral trajectory rectification (helicity) shows that it
scales with this source term.

Source term (D) arises from flow across isobars and the crowding and turning
of isopycnals with pressure. Buoyancy potential vorticity increases by about a quarter
of its value for warm water displaced from the surface to the thermocline, and by a thard
for cold water displaced from the surface to the bottom. These values are about equal to
a single contour interval on potential vorticity plots appearing in the literature.

Source term (E;) is due to frictional torques in the fluid.

Gradients of neutral surface potential vorticity are proportional to gradients of
buoyancy potential vorticity, plus contributions due to the buoyancy potential vorticity

source terms (C) and (D). A differential equation for neutral surface potcﬁtial vorticity,
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derived from the buoyancy potential vorticity conservation equation, appears as

Eq. (B.36).

B.10 Glossary of symbols and guide to equations

[

‘“Qzl‘f’“\ﬁib
g
»

u, v, w

X,y z

al' ﬁl

sound speed (see Eq. B.3)

density increment on a (s, 6) plot (see Eq. B.21)
frictional force vector

Coriolis parameter, 2€2sin A, where A is latitude
gravitational acceleration

Cartesian unit vectors

buoyancy gradient vector (see Eq. B.9)
Brunt-Viisild or buoyancy frequency (see Eq. B.5)
potential vorticity (see Eq. B.1, B.2)

pressure

unit vector along salinity axis of (s, 6, p) coordinates
pressure per unit distance in (s, 6, p) coordinates
reference pressure

salinity

neutral and dianeutral parts of salinity gradients or changes following the
flow (see Eq. B.22 and B.23).

salinity per unit distance in (s, 6, pj coordinates
unit vector along salinity axis of (s, 6, p) coordinates
time

Cartesian components of velocity vector

Cartesian coordinates
buoyancy potential vorticity, constructed from L (see Eq. B.10)

potential temperature expansion and salinity expansion coefficient in
(s, 6, p) coordinates (see paragraph following Eq. B.7)

angle between salinity axis and isopleth of density (see Eq. B.20)
density
potential density (see Eq. B.4)

354




potential density referenced to (m - 1000) dbar pressure,
n=20,1,2,...

potential temperature

neutral and dianeutral parts of potential temperature gradients or changes
following the flow (see Eq. B.22 and B.23).

potential temperature per unit distance in (s, 6, p) coordinates

unit vector along potential temperature axis of (s, 6, p) coordinates

Earth's rotation rate

planetary vorticity vector

absolute vorticity vector

cross-isobar (diabaric) velocity (%)

relative vorticity vector
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